A Diploma Thesis titled “Development of driver speed models based on detailed driving data from smartphone sensors” was presented by Christina Gonidi in July 2017, with the support and data from OSeven Telematics. A large data set recorded per second was used, containing information about the exact position of the vehicle, its acceleration and deceleration and the point where 100 drivers performed harsh manoeuvers or speed changes or when they used their mobile phone, etc. In order to analyze the available data, six statistical linear regression models forecasting driver average speed were developed: one general model, two models for the periods inside or outside risky hours and three models for each road type (urban, rural and highways). The results demonstrated a strong correlation between the average speed and the distance covered by the driver as well as driver accelerations and harsh changes.
Archives
Tag cloud
accident severity
alcohol
buses
campaigns
cell phone
cerebral diseases
children
culture
cyclists
data analysis
distraction
driving simulator
education & training
enforcement
equipment
esafety
fatigue
helmet
impact assessment
international comparisons
junctions
lighting
lorries
measures assessment
mobility and transport
mopeds
motorcyclists
motorways
naturalistic driving
older drivers
pedestrians
road fatalities
road interventions
road safety data
rural roads
safety assessment
safety equipment
seat belt
speed
strategy
traffic
urban safety
weather
work related safety
young drivers