

TRB ACS10 Quarterly Standing Committee Meeting on Transport Safety Management Systems

Online, 25 September 2024

Impact of a 30 km/h City-Wide Speed Limit

Eva Michelaraki

Civil Transportation Engineer

Together with: George Yannis, Professor

Department of Transportation Planning and Engineering National Technical University of Athens

Outline

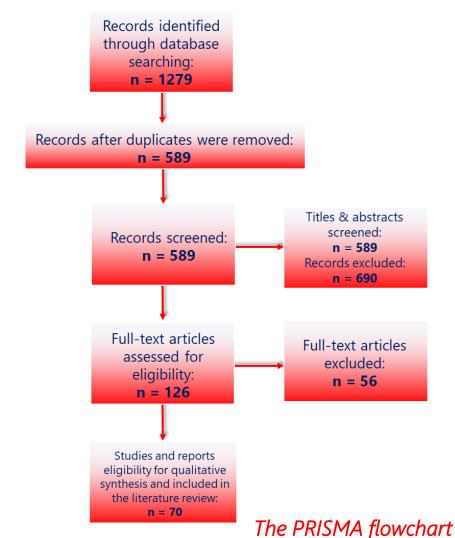
- 1. Key facts about speeding
- 2. Scientific evidence on 30km/h city-wide schemes
- 3. Cost benefit analysis example
- 4. Conclusion
- 5. 30 Marathons in 30 months campaign

Objectives

- Critical assessment of the effectiveness of city-wide 30 km/h speed limit in order to enhance urban sustainability
- ➤ Identification of changes before and after the implementation of city-wide 30 km/h speed limits in terms of:

Methodology

- Meta-analyses from 17 cities and 70 studies were reviewed
- Systematic search of relevant scientific and grey literature, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
- The inclusion criteria for selecting relevant studies were:
 - ✓ Search term included in title, abstract or key words
 - ✓ Studies published from 1992 and onwards
 - ✓ Studies including information with regards to 30 km/h speed limit in the title or abstract
 - ✓ Source: peer-reviewed journals before peer-reviewed conference papers before scientific papers/articles


Key search phrase	Search terms	Screened papers	Included papers
30 km/h speed limit	"30 km/h" OR "20 mph" OR "30 km/h speed limit" OR "speed limit" OR "speed limit reduction" OR "maximum speed" OR "reduced speed" AND "traffic calming" AND "mobility" AND "city-wide" AND "cities" AND "implementation modalities" AND "benefits" AND "urban areas"	589	70

Identification

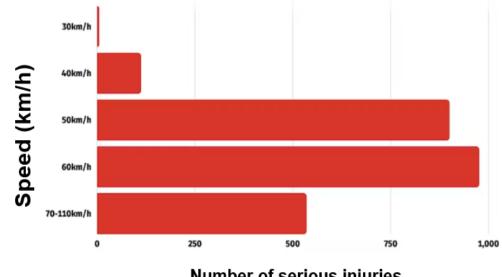
creening

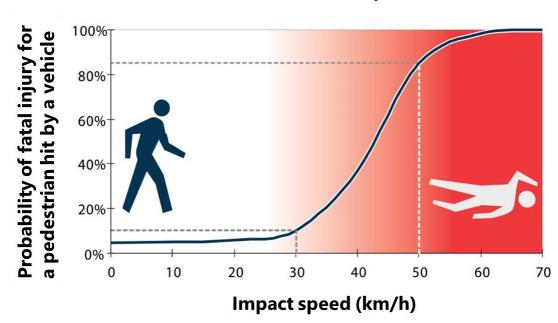
Eligibility

Included

Key Facts about Speeding

Speeding Kills (1/2)


- ➤ Road crashes is a major societal problem worldwide, with 1,19 million road fatalities per year and more than 50 million of road injuries
- ➤ Speeding is the number one cause of road crashes worldwide, especially in cities where pedestrians, cyclists and motorcyclists are highly exposed and vulnerable in case of a collision (70% of fatalities in urban areas are VRUs)
- > Speed has been found to be a major contributory factor in around 10-15% of total crashes and in around 30% of fatal crashes
- > Speed effects the quality of life of urban residents, especially the safe mobility of vulnerable road users



Speeding Kills (2/2)

- > When speed increases, the risk of a crash and of its severity increases as well
- > A 5% increase in average speed leads to approximately a 10% increase in all injury crashes and a 20% increase in fatal crashes
- > The increase in crash risk is usually attributed by the fact that when speed increases, the time to react to traffic situations is shorter and manoeuvrability of a speeding car is limited
- > Pedestrian fatalities increase from 10% in 30km/h collisions to 90% in 50km/h collisions



Number of serious injuries

Scientific Evidence on 30km/h City-wide Schemes

Benefits from 30km/h Speed Limit (1/2)

according to international literature

Setting a speed limit of 30 km/h where people and traffic mix, make streets **safer**, **healthier**, **greener and more liveable**

Road crashes reduction

- Reductions in speed limits are intended to improve road safety by decreasing travelling speed and thus reducing the risk of crashes occurring and the severity of crashes that do occur
- The risk of death is almost **five times higher** in collisions between a car and a pedestrian at 50 km/h compared to the same type of collisions at 30 km/h

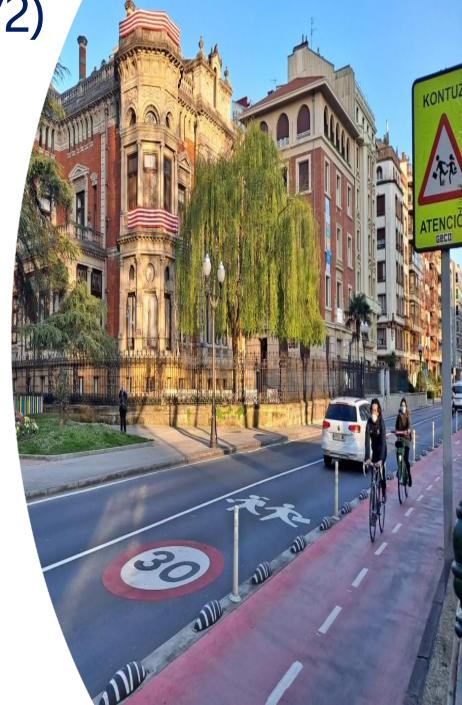
Air pollution reduction

- > Streets that promote safe walking and cycling can reduce car dependency and harmful vehicle emissions that contribute to climate change
- City-wide 30 km/h speed limit reduce carbon dioxide and nitrous oxide emissions from diesel cars, and particulate matter emission from both diesel and petrol cars, thus **reducing air pollution**

Benefits from 30km/h Speed Limit (2/2)

according to international literature

Fuel consumption reduction


- > Lower speeds lead to lower fuel consumption
- > Smoother traffic flow leads to additional fuel economy (eco-driving)

Traffic flow improvement

- ➤ Motor traffic volumes decrease, since slower speeds encourage active, sustainable and shared travel
- ➤ Reducing the speed limit at 30km/h improves traffic flow, **reduces congestion** and improves travel times as there is less stop/start traffic movement

Sustainable improvement

- Calm driving in lower speeds is a mean of **healthier living** for all road users; and especially children and the elderly walk more freely
- Significant increase (in the mid-term) of pedestrian, cyclists and e-scooter active mobility and Public Transport passengers

Cities with 30 km/h Speed Limit

A/A	City	Implementation Started	A/A	City	Implementation Started
40	Amsterdam	December 2023	20	Lille	August 2019
39	Wales	September 2023	19	Helsinki	May 2019
38	Bologna	July 2023	18	Madrid	September 2018
37	Florence	November 2022	17	Bilbao	June 2018
36	Copenhagen	June 2022	16	Strasbourg	February 2017
35	Lyon	March 2022	15	Dublin	January 2017
34	Den Haag	December 2021	14	Berlin	January 2017
33	Zurich	December 2021	13	Edinburgh	July 2016
32	Toulouse	November 2021	12	London	June 2016
31	Vienna	September 2021	11	Grenoble	January 2016
30	Paris	August 2021	10	Ljubljana	September 2015
29	Montpellier	August 2021	9	Luxembourg	August 2015
28	Münster	July 2021	8	Ghent	April 2015
27	Valencia	May 2021	7	Bristol	2015
26	Leuven	April 2021	6	Munich	2011
25	Brussels	January 2021	5	Brighton	2010
24	Nantes	August 2020	4	Hove	2010
23	Glasgow	January 2020	3	Warrington	July 2005
22	Antwerp	January 2020	2	Stockholm	2004
21	Barcelona	December 2019	1	Graz	September 1992

30km/h Speed Limit in Cities (1/2)

Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe

<u>Sustainability, 16(11), 4382</u>

City-wide 30km/h speed limits led to average reduction in: (meta-analyses from 17 cities and 70 studies)

- > Fatalities by 37%
- Serious injuries by 38%
- ➤ Road crashes by 23%
- > Emissions by 18%
- ➤ Noise by 2.5 db
- > Fuel consumption by 7%
- > Traffic congestion by 2%

30km/h Speed Limit in Cities (2/2)

Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe

Sustainability, 16(11), 4382

Fatalities:

> 63% and 55% reduction in Bristol and Brussels

Serious injuries:

> 72% and 50% reduction in Münster and Grenoble

Road crashes:

> 46% and 40% reduction in London and Paris

Emissions:

> 29% and 25% reduction in Berlin and Graz

Noise:

> 3 db reduction in Paris and Berlin

Energy:

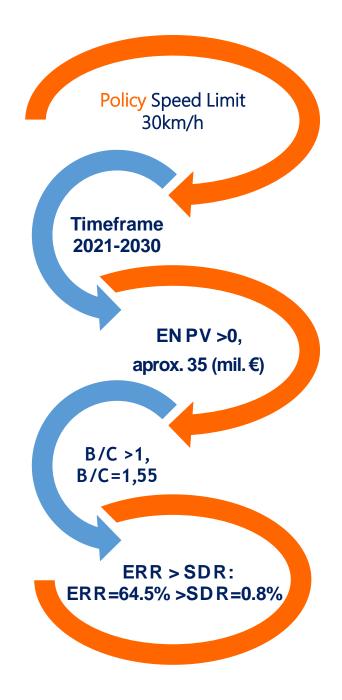
> 12% and 10% reduction in Münster and Brussels

Traffic congestion:

> 9% and 2% reduction in Grenoble and Bilbao

City	Safety			Emissions		Energy	Traffic
Oity	Crashes	Fatalities	Injuries	CO ₂ , NO _x , PM	Noise	Fuel	Congestion
Bologna	-38%	-33%	-10%	-23%			-3%
Zurich	-16%	-25%	-20%		-1.7 dB		
Paris	-40%		-25%		-3 dB		
Münster			-72%	\downarrow	\downarrow	-12%	
Brussels	-10%	-55%	-37%		-2.5 dB	-10%	
Glasgow		-31%					
Helsinki	-9%		-42%				
Bilbao	-28%			-19%			-2%
Berlin	-10%			-29%	-3 dB		
London	-46%	-25%	-25%	-10%			
Grenoble	\downarrow	\downarrow	-50%				-9%
Edinburgh	-38%	-23%	-33%	-8%			-2.4%
Bristol		-63%					
Brighton			-45%				
Hove			-45%				
Warrington			-43%				
Graz	-12%		-20%	-25%	-2.5 dB		

^{*} grey colour indicates that the impact of the implementation of 30 km/h in this city has not been examined yet ** the symbol 1 indicates that the quantitative effect of this measure has not been provided; only qualitative impact is given


^{***} these reductions refer to a comparison period before and after the implementation of 30 km/h speed limits which is not the same among all cities examined

Cost Benefit Analysis Results – Athens (1/2)

A Cost Benefit Analysis for the City of Athens was implemented till the year 2030, by including all the Costs (Implementation and Operational) and all the Benefits (Road Crashes, Fuel Consumption, Emissions) which concludes to the following results:

- In the case of the reduction of the speed limit to 30 km/h in the city center, the society benefits from a reduction in road casualties amount to €130 million over a 10-year period
- ➤ All the examined policies present a **positive ENPV** and an ERR higher than the Social Discount Rate (0.8%), indicating their feasibility over time
- ➤ The most important economic benefit arises due to the improvement of road safety through the reduction of fatalities on road crashes

Cost Benefit Analysis Results – Athens (2/2)

- ➤ It is estimated that city-wide 30 km/h speed limits on the road network of City of Athens (with the exception of major axes) will save lives annually:
 - ≥ 33 fatalities,
 - ➤ 83 seriously injured and 830 slightly injured
 - ➤ fuel consumption by 48 million litres
 - \geq 65.5 thousand tonnes of CO_2 , NO_X $\kappa\alpha I$ PM
- > The traffic congestion change is negligible
- The indirect benefits of increasing the use of Public Transport and active travel are also significant

Cost Benefit Analysis Results – Greece

It is estimated that city-wide 30 km/h speed limits on the road network of all cities in Greece (with the exception of major axes) will save lives annually:

- ➤ 104 fatalities (out of 635 in all of Greece)
- ➤ 123 seriously injured (out of 636 in all of Greece)
- >783 slightly injured (out of 12,533 in all of Greece)

Conclusion

City-wide 30km/h speed limits: the road safety catalyser

The since-long waited single road safety measure with such a significant improvement at such a low cost

Such a high societal impact for such a small change in our habits

More than a simple new traffic rule: a catalyser for a new road safety culture

Conclusion

More livable cities

Speed limits reduction gaining rapid acceptance across Europe and more and more European cities adopting lower speed limits

Significant socio-economic impact

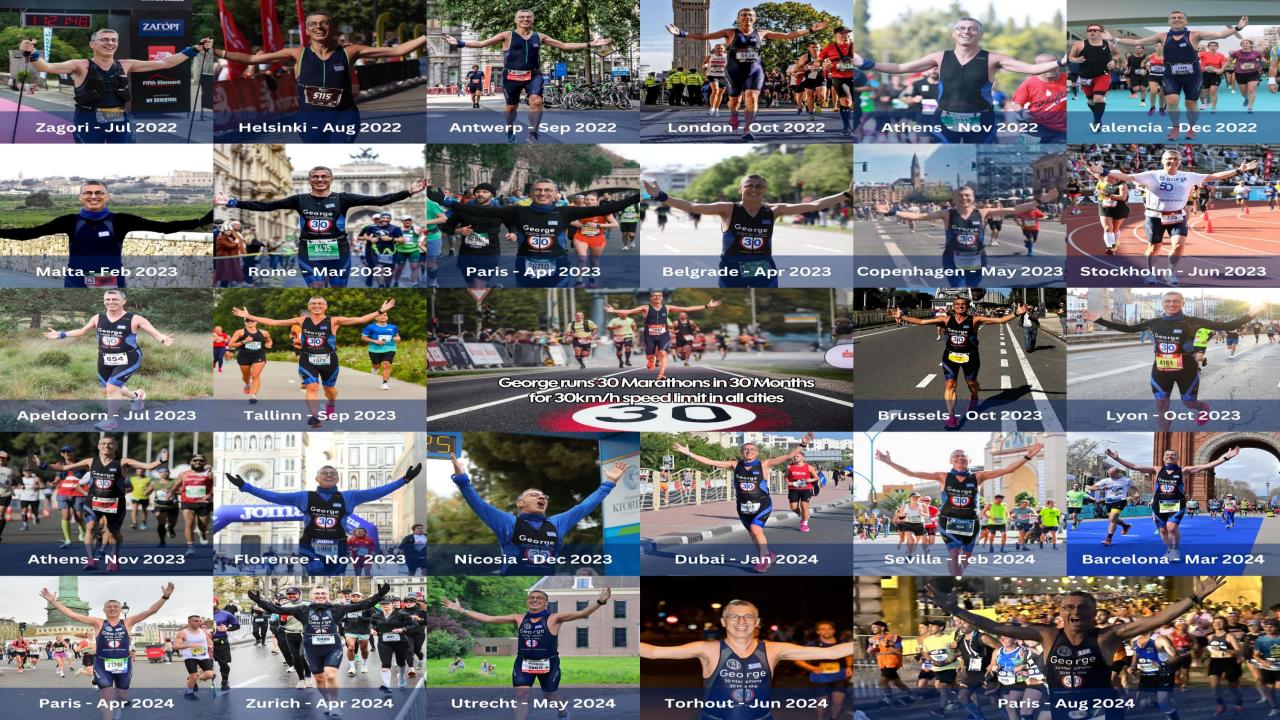
The reduction of speed limits in cities (30km/h) leads to a **significant reduction** in:

- road crashes and congestion
- fuel/energy consumption and air pollution without a significant decrease in travel times

Increase of acceptance

- ➤ Public acceptance of speed limits reduction tends to improve over time, especially by pedestrians, cyclists and Public Transport passengers
- > Inertia and reactions from car drivers need to be addressed

Accompanying Measures


- > Public consultation and awareness campaigns
- > Public transport and active mobility promotion
- > Traffic calming measures
- > Intelligent transportation systems
- > Monitoring and evaluation
- > Enforcement and police cooperation

30 Marathons Campaign

- Despite the blatant scientific evidence, the discussion and introduction of city-wide 30 km/h speed limit faces strong reactions and rigid inertia, whereas supporters' voices are often weak and inefficient resulting in hesitant politicians and Authorities
- After more than 30 years of dedication to road safety science and several Marathon races, **Prof. George Yannis** decided to step beyond the traditional scientific pleas and combine both passions for a cause: to run 30 Marathons in 30 months to actively promote the adoption of citywide 30km/h speed limit in as many cities as possible worldwide

TRB ACS10 Quarterly Standing Committee Meeting on Transport Safety Management Systems

Online, 25 September 2024

Impact of a 30 km/h City-Wide Speed Limit

Eva Michelaraki

Civil Transportation Engineer

Together with: George Yannis, Professor

Department of Transportation Planning and Engineering National Technical University of Athens