

Lectern Session 20162: Analysis of International Road Safety Data January 7, 2025

Review of 30 km/h speed limit benefits in Europe

George Yannis

NTUA Professor

Together with: Eva Michelaraki, Research Associate

Department of Transportation Planning and Engineering National Technical University of Athens

Outline

- 1. Key facts about speeding
- 2. Scientific evidence on 30km/h city-wide schemes
- 3. Cost benefit analysis example
- 4. Conclusion
- 5. 30 Marathons in 30 months campaign

Objectives

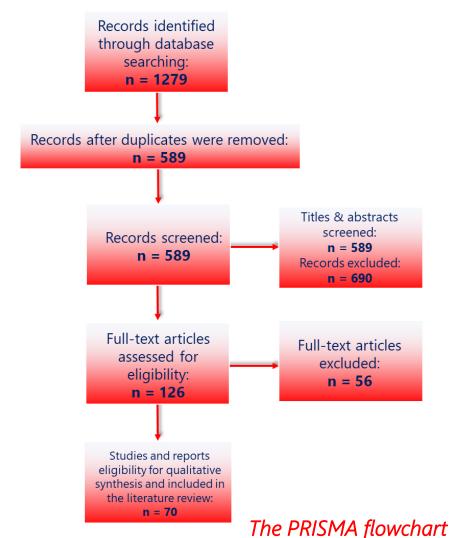
Two published literature reviews:

- > Assessment of changes before and after the implementation of city-wide 30 km/h speed limits in Europe (meta-analyses of 70 studies from 17 cities) Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe Sustainability, 16(11), 4382
- > Assessment of the effectiveness of 30 km/h speed limit through simulation studies (meta-analyses of 60 studies)

Yannis, G., & Michelaraki, E. (2024). Effectiveness of 30 km/h speed limit - A literature review. Journal of Safety Research, Vol. 92, November 2024`

Methodology

- ➤ Meta-analyses of 70 studies from 17 cities were reviewed
- Systematic search of relevant scientific and grey literature, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
- ➤ The inclusion criteria for selecting relevant studies were:
 - ✓ Search term included in title, abstract or key words
 - ✓ Studies published from 1992 and onwards
 - ✓ Studies including information with regards to 30 km/h speed limit in the title or abstract
 - ✓ Source: peer-reviewed journals before peer-reviewed conference papers before scientific papers/articles


Key search phrase	Search terms	Screened papers	Included papers
30 km/h speed limit	"30 km/h" OR "20 mph" OR "30 km/h speed limit" OR "speed limit" OR "speed limit reduction" OR "maximum speed" OR "reduced speed" AND "traffic calming" AND "mobility" AND "city-wide" AND "cities" AND "implementation modalities" AND "benefits" AND "urban areas"	589	70

Identification

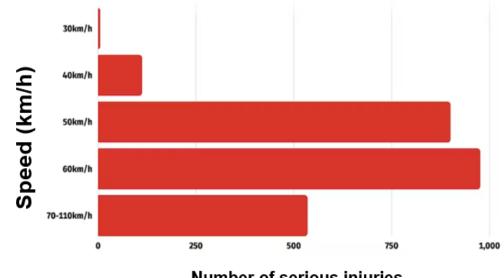
Screening

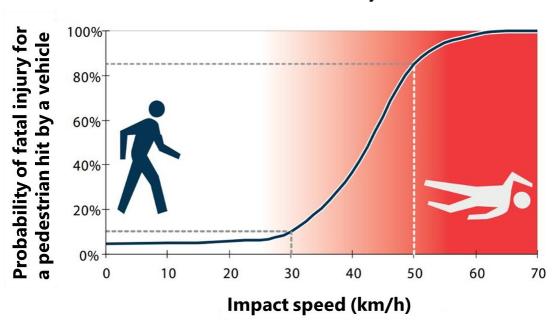
Eligibility

Included

Key Facts about Speeding

Speeding Kills (1/2)

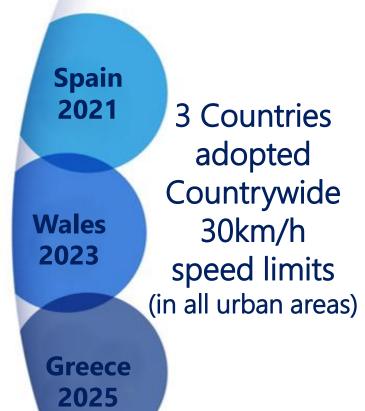

- ➤ Road crashes is a major societal problem worldwide, with 1,19 million road fatalities per year and more than 50 million of road injuries
- ➤ Speeding is the number one cause of road crashes worldwide, especially in cities where pedestrians, cyclists and motorcyclists are highly exposed and vulnerable in case of a collision (70% of fatalities in urban areas are VRUs)
- > Speed has been found to be a major contributory factor in around 10-15% of total crashes and in around 30% of fatal crashes
- Speed effects the quality of life of urban residents, especially the safe mobility of vulnerable road users



Speeding Kills (2/2)

- > When speed increases, the risk of a crash and of its severity increases as well
- > A 5% increase in average speed leads to approximately a 10% increase in all injury crashes and a 20% increase in fatal crashes
- > The increase in crash risk is usually attributed by the fact that when speed increases, the time to react to traffic situations is shorter and manoeuvrability of a speeding car is limited
- > Pedestrian fatalities increase from 10% in 30km/h collisions to 90% in 50km/h collisions

Number of serious injuries


Scientific Evidence on 30km/h City-wide Schemes

Cities with 30 km/h Speed Limit

A/A	City	Implementation Started
40	Amsterdam	December 2023
39	Wales	September 2023
38	Bologna	July 2023
37	Florence	November 2022
36	Copenhagen	June 2022
35	Lyon	March 2022
34	Den Haag	December 2021
33	Zurich	December 2021
32	Toulouse	November 2021
31	Vienna	September 2021
30	Paris	August 2021
29	Montpellier	August 2021
28	Münster	July 2021
27	Valencia	May 2021
26	Leuven	April 2021
25	Brussels	January 2021
24	Nantes	August 2020
23	Glasgow	January 2020
22	Antwerp	January 2020
21	Barcelona	December 2019

	<u> </u>		
A/A	City	Implementation Started	
20	Lille	August 2019	
19	Helsinki	May 2019	
18	Madrid	September 2018	
17	Bilbao	June 2018	
16	Strasbourg	February 2017	
15	Dublin	January 2017	
14	Berlin	January 2017	
13	Edinburgh	July 2016	
12	London	June 2016	
11	Grenoble	January 2016	
10	Ljubljana	September 2015	
9	Luxembourg	August 2015	
8	Ghent	April 2015	
7	Bristol	2015	
6	Munich	2011	
5	Brighton	2010	
4	Hove	2010	
3	Warrington	July 2005	
2	Stockholm	2004	
1	Graz	September 1992	

30km/h Speed Limit in Cities (1/2)

Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe

<u>Sustainability, 16(11), 4382</u>

City-wide 30km/h speed limits led to average reduction in: (meta-analyses of 70 studies from 17 cities)

- > Fatalities by 37%
- ➤ Serious injuries by 38%
- ➤ Road crashes by 23%
- > Emissions by 18%
- Noise by 2.5 db
- > Fuel consumption by 7%
- > Traffic congestion by 2%

30km/h Speed Limit in Cities (2/2)

Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe

<u>Sustainability, 16(11), 4382</u>

Fatalities:

> 63% and 55% reduction in Bristol and Brussels

Serious injuries:

> 72% and 50% reduction in Münster and Grenoble

Road crashes:

> 46% and 40% reduction in London and Paris

Emissions:

> 29% and 25% reduction in Berlin and Graz

Noise:

> 3 db reduction in Paris and Berlin

Energy:

> 12% and 10% reduction in Münster and Brussels

Traffic congestion:

> 9% and 2% reduction in Grenoble and Bilbao

CILV							
City	Crashes	Fatalities	Injuries	CO ₂ , NO _x , PM	Noise	Fuel	Congestion
Bologna	-38%	-33%	-10%	-23%			-3%
Zurich	-16%	-25%	-20%		-1.7 dB		
Paris	-40%		-25%		-3 dB		
Münster			-72%	\downarrow	\downarrow	-12%	
Brussels	-10%	-55%	-37%		-2.5 dB	-10%	
Glasgow		-31%					
Helsinki	-9%		-42%				
Bilbao	-28%			-19%			-2%
Berlin	-10%			-29%	-3 dB		
London	-46%	-25%	-25%	-10%			
Grenoble	\downarrow	\downarrow	-50%				-9%
Edinburgh	-38%	-23%	-33%	-8%			-2.4%
Bristol		-63%					
Brighton			-45%				
Hove			-45%				
Warrington			-43%				
Graz	-12%		-20%	-25%	-2.5 dB		

Energy

Safety

George Yannis, Review of 30 km/h speed limit benefits in Europe

^{*} grey colour indicates that the impact of the implementation of 30 km/h in this city has not been examined yet ** the symbol \$\partial\$ indicates that the quantitative effect of this measure has not been provided; only qualitative impact is given

^{***} these reductions refer to a comparison period before and after the implementation of 30 km/h speed limits which is not the same among all cities examined

Effectiveness of 30 km/h Speed Limit

Yannis, G., & Michelaraki, E. (2024). Effectiveness of 30 km/h speed limit – A literature review. Journal of Safety Research, Vol. 92, November 2024

Energy

reduce fuel consumptionpromote smoother eco-driving

Environment

- reduce air pollution

- reduce car dependency

Road safety

decrease average travel speeddecrease conflicts with VRUs

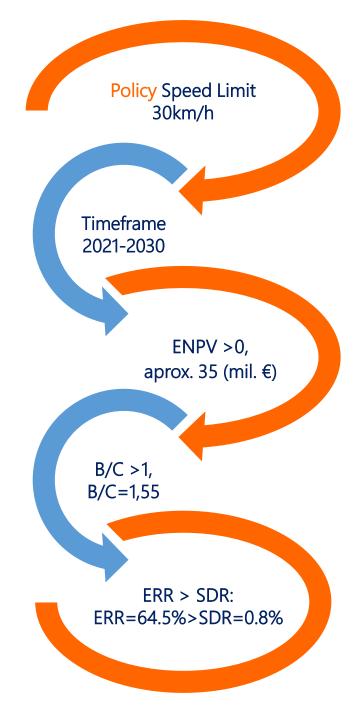
Traffic flow

reduce traffic volumesreduce congestion

Sustainability

 increase Public Transport use
 increase pedestrian, cyclists and e-scooter active mobility

Setting a speed limit of 30 km/h where people and traffic mix, make streets safer, healthier, greener and more liveable



Cost Benefit Analysis Results – Athens (1/2)

Roussou, S., Petraki, V., Deliali, K., Kontaxi, A. & Yannis, G. (2024). Cost benefit analysis of reducing speed limits in Athens to 30 Km/h. Case Studies on Transport Policy, 101289, October 2024

A Cost Benefit Analysis for the City of Athens was implemented till the year 2030, by including all the Costs (Implementation and Operational) and all the Benefits (Road Crashes, Fuel Consumption, Emissions) which concludes to the following results:

- The most important economic benefit arises due to the improvement of road safety through the reduction of fatalities on road crashes:
 - ✓ Expected Net Present Value (ENPV) > €35 million
 - ✓ Benefit-Cost Ratio (B/C) = 1,55
 - ✓ Economic Rate of Return (ERR) = 64.5%
 - ✓ Social Discount Rate (SDR) = 0.8%
- ➤ All the examined policies present a positive ENPV and an ERR higher than the SDR, indicating their feasibility over time

Cost Benefit Analysis Results – Athens (2/2)

Roussou, S., Petraki, V., Deliali, K., Kontaxi, A. & Yannis, G. (2024). Cost benefit analysis of reducing speed limits in Athens to 30 Km/h. Case Studies on Transport Policy, 101289, October 2024

- ➤ It is estimated that city-wide 30 km/h speed limits on the road network of City of Athens (with the exception of major axes) will save lives annually:
 - > 33 fatalities
 - > 83 seriously injured and 830 slightly injured
 - > fuel consumption by 48 million litres
 - \triangleright 65.5 thousand tonnes of CO_2 , NO_X $\kappa\alpha\iota$ PM
- ➤ The traffic congestion change is negligible
- The indirect benefits of increasing the use of Public Transport and active travel are also significant

Benefits from Countrywide New Speed Limits (New National Law expected for next month)

It is estimated that city-wide 30 km/h speed limits on the road network of all cities in Greece (with the exception of major axes) will save lives annually:

- ➤ 104 fatalities (out of 635 in all of Greece)
- ➤ 123 seriously injured (out of 636 in all of Greece)
- ➤ 783 slightly injured (out of 12,533 in all of Greece)

Conclusion

City-wide 30km/h speed limits: the road safety catalyser

The since-long waited single road safety measure with such a significant benefit at such a low cost

Such a high societal impact for such a small change in our habits

More than a simple new traffic rule: a catalyser for a new road safety culture

Conclusion

More livable cities

Speed limits reduction gaining rapid acceptance across Europe and more and more European cities adopting lower speed limits

Significant socio-economic impact

The reduction of speed limits in cities (30km/h) leads to a **significant reduction** in:

- road crashes and casualties
- fuel/energy consumption and air pollution without a significant decrease in travel times

Increase of acceptance

- ➤ Public acceptance of speed limits reduction tends to improve over time, especially by pedestrians, cyclists and Public Transport passengers
- > Inertia and reactions from car drivers need to be addressed

What about outside Europe?

Lessons for Global Application:

- ➤ City-wide 30km/h speed limits are very appropriate for European cities, as most of them are densely populated areas, with significant traffic of pedestrians, cyclists, escooters and motorcyclists in need of protection from cars' high speeds
- ➤ Outside Europe, 30km/h speed limits should be beneficial for the densely populated areas with high presence of Vulnerable Road Users, but not easily applicable for not densely populated areas with low presence of pedestrians, cyclists, e-scooters and motorcyclists

Accompanying Measures

- > Public consultation and awareness campaigns
- > Public transport and active mobility promotion
- > Traffic calming measures
- > Intelligent transportation systems
- > Monitoring and evaluation
- > Enforcement and police cooperation

30 Marathons Campaign

- In order to make scientists' voices louder, I engaged in a global campaign of running 30 Marathons in 30 months in order to actively promote the adoption of city-wide 30 km/h speed limit in as many cities as possible worldwide
- ➤ This campaign was concluded in November 2024 in Athens (all Marathons in under 4 hours) with a particularly significant global impact

Nicosia - Dec 2023 Dubai - Jan 2024 Sevilla - Feb 2024 Barcelona - Mar 2024 Paris - Apr 2024 Zurich - Apr 2024

Utrecht - May 2024 Torhout - Jun 2024 Paris - Aug 2024 Warsaw - Sep 2024 Munich - Oct 2024 Athens - Nov 2024

Campaign Social Impact

An Integrated Communication Policy with Strong Global Impact

- 26 cities with Marathon finish
- 3 papers in scientific journals
- 20 presentations in conferences/webinars
- 16 interviews in the electronic media
- 10 newspaper/magazine articles
- 40 social media posts
- 48 republished posts from scientific organisations and institutions (with 80.000+ post impressions)
- 400.000+ pageviews per year
- 100.000+ global audience at social media
- 10 International Organisations Allied

Lectern Session 20162: Analysis of International Road Safety Data January 7, 2025

Review of 30 km/h speed limit benefits in Europe

George Yannis

NTUA Professor

Together with: Eva Michelaraki, Research Associate

Department of Transportation Planning and Engineering National Technical University of Athens