Smart Maps supporting safe driving behavior using multi-source large-scale data

George Yannis NTUA Professor

Together with: Dimitrios Nikolaou, Armira Kontaxi, Apostolos Ziakopoulos, Petros Fortsakis, Elina Frantzola, Konstantinos Sigalos, George Kouridakis

39th Meeting of the International Road Traffic Safety Data and Analysis Group (IRTAD)

London, 9-10 April 2025

The SmartMaps Project

- Project partners:
 - National Technical University of Athens, Department of Transportation Planning and Engineering <u>www.nrso.ntua.gr</u>
 - OSeven Telematics <u>www.oseven.io</u>
 - Global Link <u>www.globallink.gr</u>
- Duration of the project:
 - 26 months (October 2021 November 2023)
- > Operational Program:
 - "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) of the National Strategic Reference Framework (NSRF) – 2nd iteration

George Yannis, Smart maps supporting safe driving behavior using multi-source large-scale data

OPERATIONAL PROGRAMME COMPETITIVENESS• ENTREPRENEURSHIP•INNOVATION

Objectives

- Exploitation of large-scale spatio-temporal data from smartphone sensors.
- Development of smart driver behaviour maps with online information on safety conditions and eco-driving (by reducing fuel consumption).
- Creation of a comprehensive tool to promote safe driving behaviour with application in Greece and around the world.

Data Collection

- Road Geometry Data (OpenStreetMap) Length, Curvature, Slope
- Observed Driving Data Field (Global Link) Seatbelt use, Helmet use, Speeding, Distraction
- Naturalistic Driving Data Telematics (OSeven) Harsh braking, Harsh acceleration, Speeding, Distraction
- Road Crash Data (ELSTAT) inaccurate location recording – cannot be used in detailed crash prediction modelling
- Emissions and fuel consumption based on speed and acceleration data (Zhao et al., 2015)
- Covering broad road network areas within the 13 Regions of Greece (NUTS2)

Road Geometry Data

- The data processing and analyses conducted within the road network of Western Greece are presented (same methodology was applied in the remaining Greek Regions).
- 9.355 road segments: (Mean Length: 223m, Total Length ~2000km).
- Road Types: (74% residential, 7% tertiary, 6% primary, 6% motorway, 5% secondary, 2% other types).
- Slopes: 59% (flat: 0-3%), 18% (mild: 3-5%), 13% (medium: 5-8%), 4% (hard: 8-10%), 6% (extreme: >10%).

Observed Driving Data

- Field measurements on road user behaviour indicators in 10 locations (4 motorway, 3 rural, 3 urban).
- Inverse Distance Weighting (IDW) was used twice for spatial interpolation in the entire road network (motorways, non-motorways).
- IDW estimates the value of a variable at a given location by using a weighted average of the surrounding known values, with weights determined by their distance to the target location, assuming that nearby locations have similar values.
- ~2.500 observations of passenger car drivers. (seatbelt, distraction, speeding).
- ~500 observations of PTW drivers (helmet).

Naturalistic Driving Data - Telematics

> 14.611 trips in the examined area in 2021.

Map matching of naturalistic driving data and considered road segments.

Naturalistic Driving Data per segment	Min.	Mean	Max.
Trip count	0	61,3	1.293
Speeding count (sec)	0	30,5	27.279
Mobile usage count (sec)	0	35,2	8.561
Harsh acceleration events	0	0,8	136
Harsh braking events	0	1,3	221

Spatial Error Model - Background

- The spatial error model handles the spatial autocorrelation in the residuals.
- The idea is that such errors (residuals from regression) are autocorrelated in that the error from one spatial feature can be modeled as a weighted average of the errors of its neighbors.
- > This model can be expressed as:

 $y = X\beta + u$, $u = \lambda_{Err} Wu + \epsilon$

- where y is an (N×1) vector of observations on a response variable taken at each of N locations,
- > X is an (N×k) matrix of covariates,
- \succ β is a (k×1) vector of parameters,
- \succ u is an (N×1) spatially autocorrelated disturbance vector,
- ε is an (N×1) vector of independent and identically distributed disturbances
- \succ λ_{Err} is a scalar spatial parameter.

Spatial Error Model - Results

Dependent variable: log(harsh_braking_count + 1), Type: error, Coefficients: (asymptotic standard errors)

	Estimate	Std. Error	z value	Pr(> z)	VIF
(Intercept)	-0.7556	0.0627	-12.052	< 0.001	-
trip_count	0.0029	0.0000	72.678	< 0.001	1.35
log(1 + length)	0.0986	0.0048	20.595	< 0.001	1.21
log(1 + speeding_count)	0.1151	0.0047	24.437	< 0.001	1.45
log(1 + efficiency)	0.4674	0.0774	6.042	<0.001	1.16
mobile_usage_rate	0.0119	0.0018	6.338	<0.001	1.03
motorway	-0.1673	0.0209	-8.012	< 0.001	1.05

Lambda: 0.0164, LR test value: 4.1966, p-value: 0.040 AIC: 11824, (AIC for Im: 11826)

- > Lambda value of 0.0164 is statistically significant, suggesting the error term is spatially autoregressive.
- From the AIC, the spatial error model performs much better than the linear model, as lower AIC indicates better fit.
- > Spatial Error Model led to non-statistical significant spatial autocorrelation in the residuals (Moran I: <0.001, $p_value = 0.503$), while the opposite is the case for the non-spatial model (Moran I: 0.027, $p_value = 0.019$).

Visualization of Model Predictions - Crash Risk

Key Analysis Conclusions

- Road geometry characteristics, naturalistic driving data, observed driving data and historical road crashes were combined for:
 - the development of a smart mapping tool for safer and eco driver behaviour,
 - road safety modelling.
- Significant positive effects of segment length, speeding events, and trip count on harsh braking events count.
- Spatial models provide a better fit to the data than non-spatial models and reduce spatial autocorrelation in the residuals.

Scientific and Societal Impact

- Innovative and intuitive tools for individual road users and decision makers.
- Exploitation of multidisciplinary data to assess multidimensional impacts.
- > Novel scope of scientific approach and analysis.
- Exploration of the influence of different policies on safety and environment.
- Contribution towards UN and EU SDG goals for crash and fuel consumption reductions (SDGs 9&13).

The Smart Mapping Tool

smartmaps

SMART MAPPING TOOL FOR SAFER AND ECO DRIVER BEHAVIOUR

https://www.saferoadsmap.com/

Areas

- > Athens
- East Attica
- Central Greece
- Crete
- Eastern Macedonia-Thrace
- > Epirus
- Ionian Islands
- North Aegean
- > Peloponnese
- South Aegean
- > Thessaly
- Western Greece
- Western Macedonia

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΕΠΕΝΑΥΣΕΩΝ ΕΙΔΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΔΙΑΧΕΙΡΙΕΙΤΗ ΠΡΟΓΡΑΜΜΑΤΟΝ ΕΤΛΑ & ΤΣ ΠΟΙΔΥΜΕΓΤΑ ΑΧΥΓΕΙΟ ΕΓΓΑΓΑΥ

Metrics

- Crash Risk (statistical modelling)
- ➢ Fuel Consumption
- Seatbelt Use
- ➢ Helmet Use
- Distraction (Telematics)
- Speeding (Telematics)
- Harsh Braking (Telematics)
- Harsh Acceleration (Telematics)
- Crashes (Area Index)
- Fatalities (Area Index)
- Emissions: CO2, CO, HC, NOx
- Road Segment: Slope, Linearity, Length, OSM ID

Smart Maps supporting safe driving behavior using multi-source large-scale data

George Yannis NTUA Professor

Together with: Dimitrios Nikolaou, Armira Kontaxi, Apostolos Ziakopoulos, Petros Fortsakis, Elina Frantzola, Konstantinos Sigalos, George Kouridakis

global link

39th Meeting of the International Road Traffic Safety Data and Analysis Group (IRTAD)

London, 9-10 April 2025

