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Abstract The various rapid advances in computer systems and new algorithms 
have applications in all aspects of transport, and road safety could not be an excep-
tion. Artificial Intelligence (AI)-based modelling has become more accessible and 
approachable, and road safety experts have been acquiring new knowledge on how 
to enhance road safety in the examined networks using increasingly sophisticated 
algorithms. Simultaneously, data collection is becoming more affordable, seamless, 
voluminous and multifaceted, departing from traditional, rare road safety indica-
tors, such as crashes and casualties, to an array of surrogate safety measures with 
high recording frequency, such as harsh events, Time-To-Collision or a wealth of 
driver behavior data. The aim of the present chapter is to provide an overview of 
current progress. Specifically, aspects of AI for (i) modelling road user behavior, (ii) 
modelling network-level performance and (iii) conducting in-depth crash analysis 
are discussed. Promising research directions to be explored in the imminent future 
are presented as well, in the form of high-impact feature engineering, crash and injury 
causality analyses and ethical AI applications. 

Keywords Road safety · Artificial intelligence · Big data · Vision zero ·
Surrogate safety measures 

1 On the Issue of Using AI to Improve Traffic Conditions 

Road safety remains an ever-present issue in motorized societies, as a heavy toll 
of more than 1.19 million deaths occurred annually due to road crashes in recent 
years, up to 2021 [1]. Specifically in the European area, about 22.800 road traffic
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fatalities were recorded in the 27 EU Member States in 2019, with almost 40% of 
road fatalities being recorded in urban areas. Vulnerable Road Users (VRUs), which 
comprise people too young or too old to drive, as well as people with mobility and 
other physical impairments, account for 70% of road fatalities in urban areas. This 
seems like an unfair added predicament, as VRUs are forced to conduct their mobility 
activities while enjoying the least physical protection, contributing to injuries and 
fatalities disproportionately. 

For decades now, highly modernized countries have adopted Vision Zero as their 
leading strategic approach to reduce crash consequences and to promote road safety. 
Vision Zero emerged in Sweden during the 1990s and advocates that road crashes 
are preventable, while humans are imperfect and fallible, which is reflected on their 
driving behavior [2]. These can be failings which can be mitigated through the 
adoption of a Safe System Approach, which proposes the creation of forgiving and 
damage-preventing road environments, adopted by the European Commission and 
the World Health Organization as the way forward [3]. While significant progress 
has been made in past decades, in more recent years crash data have shown that crash 
numbers are plateauing and are quite resilient to further reductions. Therefore, all 
available tools have to be explored and employed for the creation of a truly Safe 
System. 

In parallel, the rapid technological advancements of the previous decade continue 
to emerge in the present one at an accelerated rate. The various cities and trans-
port networks are being prepared to receive the circulation of Connected Vehicles 
(CVs) and Automated Vehicles (AVs), which are expected to roll out in various 
degrees of automation, aggressiveness profiles and market penetration rates (MPRs) 
[4]. Meanwhile, the high accessibility and recent publicity of Artificial Intelligence 
(AI) lead to its rapid adoption, evolution and, ultimately, deployment to solve road 
safety problems in transport. A vast array of approaches are proposed by academic 
or industrial researchers, start-ups and even larger technological companies as tech-
nically feasible, aided by the rapid data collection venues offered by the Internet 
of Things (IoT), 5/6G technologies and deeper MPRs of smart devices, as well as 
advances in processing power. 

It is unclear, however, how all these developed approaches will affect in-situ 
observed road safety levels in the—currently shaping—future mobility societies. 
Therefore, when the public sector moves to adapt to changes and anticipate new 
modes and habits of interconnected mobility, they have an unclear picture of real-
world effectiveness and the degrees and directions of impacts they should anticipate 
[5]. 

At this point, it becomes crucial to define the term Artificial Intelligence. Within 
the present study, AI is given a wide scope, being defined as any technology (soft-
ware and supporting hardware) belonging to the family of advanced computing tech-
niques performing tasks traditionally requiring human intelligence and discretion, 
or newly invented tasks enabled due to the sheer provided computational power 
and capability. In a transport context, these tasks can include vehicle driving and 
navigation, traffic management, route optimization, public transport planning and 
operation, ridesharing, driver recording and monitoring, infrastructure maintenance
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detection and scheduling, interactions with public and so on. AI is nowadays typi-
cally employed in various roles as well, from data collection, transmission, cleaning 
or pre-processing, processing and storage to analysis and formulation of conclusions. 

Similar definitions are given in past literature (indicatively, [6]) with broad appli-
cations; nonetheless, fruitful conclusions can also be derived by focusing in a specific 
sector, such as road safety. Within a more specified road safety context, various forms 
of AI technologies are being implemented in reactive (diagnostic) and proactive 
(anticipatory) approaches, e.g. [7], apart from the previous data manipulation tasks. 
Diagnostic approaches involve causal modelling for road crash occurrence proba-
bility, as well as factors contributing to high injury severity. Proactive approaches can 
constitute analyzing data from Surrogate Safety Measures (SSMs), such as Time-
to-Collision (TTC), Post-Encroachment Time (PET) and harsh driving events (harsh 
accelerations, breakings, cornerings) [8, 9]. 

Based on all the aforementioned, the present study serves to showcase the more 
practical dimensions of AI applications used to solve road safety transport problems, 
departing from the strictly academic AI mathematical formulations and discussing 
issues related to big data, current challenges and barriers, as well as future devel-
opments. After this Introduction (Sect. 1), the structure of the present chapter is as 
follows: Sect. 2 follows interesting developments in Big Data applications, Sect. 3 
showcases examples and conveys data learned from Machine Learning (ML) method-
ologies in road safety, Sect. 4 discusses AI issues not directly related to data or 
modelling, such as the handling of vehicular movement and AI strategic applica-
tions, Sect. 5 provides promising future research directions in the form of high-
impact feature engineering, crash and injury causality analyses and ethical AI appli-
cations and finally Sect. 6 summarizes the present chapter and provides the relevant 
conclusions. 

It is critical to mention that the present chapter does not aim to present an exhaus-
tive literature review of all AI-supported road safety studies. Rather, the aim is to 
provide an overview of all the different pillars of AI and how these different aspects 
can potentially improve traditional approaches, given the right applications, and how 
they interact with each other. 

2 Big Data, Broad Horizons 

2.1 Big Data Sources 

Apart from the multiple pillar sources, vast volumes of large databases become avail-
able, resulting in big data that open newfound research and operation capabilities. 
Overall, the rate of accumulation of data by human activity can be characterized as 
exponential [10]. Big data are a staple of this explosive activity and are known to be 
characterized by the three v’s: (i) volume, (ii) velocity, and (iii) variety.
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1. Volume denotes the fact that big data includes massive amounts of information 
points, which often can exceed the capacity of traditional database handling 
systems. 

2. Velocity refers to the (high) rate to which data are generated, processed, trans-
mitted and stored, also defining its capacity for real-time or near real-time 
processing. 

3. Variety refers to the various formats and structures which big data might assume. 
These include structured, unstructured or semi-structured databases and file 
formats such as .json, .xml or .csv types, all requiring unique coding and 
processing techniques. 

Indicative sources of big data can include the following non-exhaustive list:

• Mobile Phone data, including: 

– Cellphone Presence-Based Data (e.g. Google Maps, Here, Waze data) 
– Cellular Network Data (e.g. mobile phone operators, signal triangulation etc.) 
– Cellphone Sensor-Based Telematics Data (e.g. OSeven, ZenDrive, Octo) 
– Private agency sensor data (e.g. INRIX, Waycare) 
– Travel Card data (e.g. Oyster card, Opal card) 
– Public authority sensor or traffic measurement data (e.g. Ministries, Public 

Transport Authorities, Cities, Regions) 
– Weather data (e.g. OpenWeatherMap, AccuWeather, etc.) 
– Census data (e.g. Eurostat, National Statistics) 
– Digital map data (e.g. OpenStreetMap, Google Maps, etc.) 
– Shared mobility data (e.g. GPS, routing, etc.) 
– Research oriented data (e.g. floating car/instrumented vehicles)

• Vehicular On-Board Diagnostics data (e.g. OEM industry)
• Camera-Based data: 

– On/In-vehicle (internal, dashcam and peripheral) 
– On the road (cities, operators, police)

• Data from Car Sharing Services (e.g. Uber, Lyft, BlaBlaCar)
• Data from Bike Sharing Services (e.g. 8D Technologies, Mobike)
• Data from research project pilots (e.g. SHOW project automated shuttle data)
• Social Media data (e.g. Facebook, Twitter) … and a myriad of similar other 

sources. 

2.2 Big Data Biases 

This big data wealth enables differentiations per road user category and focus on 
niche analyses (e.g. vulnerable road users, professional drivers, freight vehicles etc.). 
Nonetheless, it is important to not disproportionately rely on big data, as their utility 
to solve contemporary and future transportation problems is limited by the amount
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of insightful information that they can provide, as well as the expert knowledge, and 
also imagination, of the users. There are arguments that big data are overhyped and 
overstated as to their potential [11]. 

There are several additional issues regarding the utilization of big data that merit 
consideration before ambitiously rushing to explore their potential. In particular, 
the consequences of using data which are not always representative of the whole 
population should be assessed and properly corrected. Inherent bias toward specific 
user groups may be present, dependent on an array of factors, such as: 

(i) location of the data collection source (e.g. university campuses, hospitals etc.), 
(ii) acceptability and trust of technology (e.g. older participants avoiding partici-

pation or not having smartphones altogether) and so on, 
(iii) influences of a type similar to self-reported data (e.g. applications that can be 

turned off during poor performances, causing reporting/publication bias). 

Self-reported data are known to lack in accuracy and direct observation capabilities 
[12] while featuring response bias [13]. Response bias may manifest as desirability 
bias, misunderstanding of the questions and recall error [14]. 

In addition to the previous, researcher bias can intensely manifest at times through 
the production of specific desired conclusions that drive the research setup, approach 
or outcomes. Arguably, this is one of the most critical forms of bias, in the sense 
that it is deliberate, and should be avoided at all costs. A particular point especially 
applicable to road safety is the fact that it is easy to wrongly consider a dataset as 
unbiased if it covers a specific dimension in detail (e.g. covering different road users) 
while failing completely in another (e.g. not covering exposure). It should also be 
noted that, in terms of research conduct, there is a high risk for decision makers to 
be misled by the opportunistic analysis of seemingly low-cost data in absence of 
qualified data scientists and statisticians working in a transport context. 

2.3 Big Data Openness 

A critical issue hindering the exploitation of big data pertains to its openness. Stem-
ming from industrial practices, researchers, practitioners and other interested stake-
holders find big data encased in ‘silos’ in the respective companies that they are 
produced by or sold to. To make matters worse, fragmentation of data ownership for 
what is often very related (and very pertinent to each other) pieces of information is 
observed, compounded by a lack of interoperability between datasets and platforms. 
The high variation within data ownership is driven by the identity of the compa-
nies or people generating and collecting the data and reluctance to share data due to 
privacy, legal liability, IP, competition, or cost related issues. This diversity of data 
sources typically affects data quality, especially when the same features are measured 
(e.g. speeding) instead of complementary variables being measured (e.g. speeding 
being complemented by acceleration data). Finally, the capacity of current compu-
tational systems to effectively process big data on traffic and road user behaviour,
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especially considering real-time responses or low temporal granularities, is typically 
not developed sufficiently to cover present demands. 

On the part of data consumption, different interests in the data of the various 
road safety stakeholders manifest, creating differing requirements for data access. 
Specific sensitivities in road safety data need to be taken into consideration effec-
tively, to prevent them being barricaded away by GDPR regulations, as they can 
be ethically or commercially sensitive. Overall, there is a lack of targeted expertise 
in machine learning, data mining, and data management with a road safety context 
among industrial operators that limits the potential that can be displayed by utilizing 
big data, especially coupled with effective AI technologies. 

2.4 Big Data as Surrogate Safety Measures 

A specific subset of the aforementioned big data can be utilized as Surrogate Safety 
Measures (SSMs). SSMs have several demonstrable advantages, such as the fact that 
they can be collected rapidly compared to crashes, requiring much shorter study and 
collection periods [9] and the capacity to model hypothetical scenarios, such as the 
complete change of an intersection’s infrastructure layout (e.g. new directions, added 
lanes, forbiddance of movements, signal timing change) or futuristic scenarios, such 
as those involving connected and automated vehicles [15]. Alternatively, SSMs can 
be collected and used in areas with limited or no crash data availability, widening 
the operational capabilities of road safety practitioners. 

Various big data SSMs can be obtained through an array of methods, such as 
traffic conflicts, harsh driving events (i.e. harsh braking, harsh acceleration, harsh 
cornering), spikes in spatial/temporal headways, observations of low PET, TTC or 
DRAC thresholds, lane encroachments and others. 

These big data SSMs can be considered in truly proactive aspects of road safety, 
providing information on road safety levels before crashes occur. Recent adaptations 
of the work of Tarko [16] allow for the production of simulated crashes within macro-
scopic simulation software [17], which broaden the field of potential applications 
further. 

In cases of automated collection, which is both the norm and the entire point of 
shifting to such SSMs, the analyst should bear in mind that these quantities feature 
little to no underreporting instances, and, with the correct adaptations to the counting/ 
classifying codes, they can aid with crash reporting and other road closure or disrup-
tion events, potentially serving as indicators of transport system resilience as well, 
as indicated by emerging research topics [18]. This comparative advantage can save 
a considerable margin of time when considering rapid post-crash interventions, such 
as first aid, hospital transfers and police interventions.
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Regarding naturalistic driving conditions, automated data collection of SSMs is 
possible through four main venues: 

1. Instrumented/floating vehicles with sensors and cameras [19]. 
2. Unmanned Aerial Vehicles (UAVs—also known as drones) data [20]. 
3. On-street fixed sensors, possibly including camera video image analysis [20]. 
4. Smartphone sensors (harsh braking, harsh accelerations, harsh cornering, driving 

distraction via cellphone use, speeding, poor road surfaces) [21]. 

Furthermore, a lot of byproducts of these applications and investigations emerge, 
which lead to a more well-rounded and holistic improvement of road safety. Street 
imagery, also collected by floating vehicles, supports the assessment of road safety 
performance (star-rating for roads), such as those conducted by iRAP [22] or more  
recently proposed by the European Commission with Directive (EU) 2019/1936 [23]. 
Drones and, with sufficient purpose-oriented adjustments, satellites could potentially 
complement the available range of data, providing a bird’s eye point of view. Drones 
can start providing image capturing solutions with increased market penetration as 
their technology improves and becomes more affordable for such uses, especially 
considering extensions of battery life and charging speed. 

Technologies like automatic crash notification (eCall) and event data recorders 
enable data-driven responses to post-crash problems, which may or may not be 
classified as big data. Connectivity of vehicles can also provide increased dimensions 
to these issues, as active safety system activations can also be considered among 
surrogate safety metrics, for instance for well-established systems such as:

• Anti-lock Braking System [ABS];
• Electronic Stability Control/Program [ESC/ESP];
• Autonomous Emergency braking [AEB]. 

However, it is critical to note that further research on the validation of big data 
SSMs is essential, for a variety of reasons: Indicatively, more studies are needed 
to reveal which metrics not only are correlated with reported crashes but also have 
predictive capabilities for crashes. Subsequently, a ranking of SSM parameters is 
needed to determine how appropriately they each can predict the number of fatalities 
and/or injuries, an approach which might have to be disaggregated to different road/ 
crash/vehicle types. 

SSMs can integrate different road user interactions, for instance how pedestrians 
negotiate crossing decisions with oncoming cars or how motorcycle maneuvers are 
conducted when bypassing moving buses or trucks. These types of encounters, if 
appropriately automated, lead to higher dimensionality of available data as the occur-
rence of an entire situation can be investigated as a pattern. SSMs have a comparative 
advantage to crashes, as they can be recorded in a more proactive manner, and traffic 
is not disrupted by SSMs such as harsh brakings or low TTC. 

A next step would be then to determine how these metrics can integrate crash 
participant fragility (proneness to injury), speed, mass and other crash type conse-
quences, such as disruptions or other types of disasters (e.g. secondary road crashes, 
oil spillages etc.). In all cases, the adoption of SSMs leads to the review of statistical
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training needs, so that data are not misused/misinterpreted, and the approach of the 
analysts shifts from strictly a rare-events approach to a hybrid, surrogate-enhanced 
approach. 

2.5 Big Data and Crowdsourcing 

In recent years, higher IoT and vehicular connectivity has provided a venue for higher, 
automated and seamless data collection through crowdsourced trips of CVs. Such 
datasets can be collected rapidly and can easily reach big data sizes, numbering in the 
millions of observations. Crowdsourced data can be a conceptual subset of real-time 
datasets, used either as a substitute or as a control tool to verify prediction robustness 
[24]. The potential of new SSM investigation is also transferred to crowdsourced 
data, with new SSMs such as concept of volatility investigated by related research 
[25]. Crowdsourced data may, however, face redundancies by the reporting of the 
same effect multiple times by involved people, for which additional data cleaning 
approaches might be necessary [26], as their absence would skew crash hotspot 
predictions from multi-counting. 

Crowdsourcing can take additional forms apart from road safety or mobility-
oriented data. The OpenStreetMap (OSM) initiative is an example of infrastructure-
oriented crowdsourcing reaching global scales. OSM serves as a collaborative plat-
form for crafting user-generated street maps. In essence, OSM harnesses Volunteered 
Geographical Information (VGI) [27]. Originating at University College London in 
2004, the OSM endeavor has flourished through exponential crowdsourced contribu-
tions, characterized by ongoing refinements and enhancements, resulting in a robust 
repository of Open Geodata suitable for rigorous research purposes [28]. Embraced 
by numerous entities, including corporations, projects, and small to medium-sized 
businesses, OSM has gained widespread recognition and trust (OSM, 2019). Initially 
focused on England, OSM’s coverage has expanded significantly, evolving from 
capturing 29% of England in 2009, [29] to achieving global coverage with increasing 
data accuracy [30]. 

Efforts have also been made to adapt and streamline data collection processes to 
enhance specific repositories, such as the AiRAP initiative of iRAP, a global charity 
aiming to evaluate road segments and improve stakeholders through the respective 
training, while monitoring road safety levels in intervention areas. Through AiRAP, 
accreditation services were established that will allow data suppliers to seamlessly 
provide their data to the main iRAP databases. The initiative aims to incorporate data 
from vision-based analysis, LIDAR, telematics and other AI data sources [31].
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3 Machine Learning in Road Safety 

The pillar that emerges as more obvious when AI is considered for road safety 
developments is probably Machine Learning (ML). Apart from a body of research 
rapidly growing in recent years, even heavily industrial developments, such as object 
detection algorithms implemented by automated vehicles, rely heavily on ML and 
its various subdivisions. 

In the following section, a brief overview of the various scopes and purposes for 
which ML is commonly used will be provided, along with examples and outlines of 
new developments such as Explainable AI. Additional aspects of AI applications in 
road safety will be outlined subsequently. 

3.1 Machine Learning and Its Scopes 

The term Machine Learning (ML) denotes a specific aspect of artificial intelligence 
(AI), focusing on the development of algorithms and statistical models that enable 
computers to perform tasks without being explicitly programmed for each one. ML 
algorithms are data-driven, learning from the datasets that they are being provided. 
Moreover, they are excellent for identifying patterns, making decisions and also 
forecasting the target quantities in the future based on the data they are supplied, 
given that specific care is taken to construct them with minimal biases and over-
adaptivity to a specific dataset that would hinder generalization, a tendency known 
as overfitting. 

ML algorithms can be categorized in three broad categories: 

1. Supervised algorithms, used to read an amount of labeled inputs and then perform 
classification or regression on a designated target variable based on features 
drawn from the other inputs. 

2. Semi-supervised algorithms, used to read a small amount of labeled inputs to 
group the outputs of larger unlabeled data in order to improve model performance 
and generalization capabilities. 

3. Unsupervised algorithms, used to read a dataset without specific labels, and then 
attempt to find any patterns or predominantly emerging groups in these data, for 
instance with clustering or dimensionality reduction. 

In the field of road safety, various forms of ML, deep learning (DL) or similar 
algorithms have been implemented in research endeavors, with an increasing popu-
larity over the recent years [32]. Some of these ML applications are outlined in the 
following, including supervised and unsupervised tasks, however it is important to 
note that the literature is rapidly advancing, constantly forming new connections and 
opening undiscovered research venues. 

It is important to mention that the general good practice steps of ML must be 
observed. Indicatively, overfitting (and underfitting) must be considered, an issue
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leading to the algorithm learning too well (or too poorly) from the data and under-
performing in new, unseen-before datasets. This problem is typically mitigated by 
cross-validation (for instance, k-fold cross-validation) Overfitting is also influenced 
by proper dataset selection and additionally proper feature selection from each 
specific dataset. When splitting a dataset to train, testing and/or validation subsets, 
it is important to observe that good distribution of all variables (and especially the 
target variable) is ensured across all subsets, a process which has been largely auto-
mated nowadays (e.g. [33]). Another option is to employ early stopping in the model 
training process to avoid performance degradation and overlearning from the data, 
thereby reducing overfitting. 

Moreover, scaling techniques are often crucial for the proper function of various 
ML algorithms (most notably Neural Networks), which becomes critical even before 
predictive performance can be regarded. Scaling refers to the transformation of input 
features to the model so that they have comparable ranges (scales). The process 
ensures quicker computational types, and, more importantly, equal, unskewed contri-
butions of each feature. Some algorithms (especially tree-based algorithms) may not 
require scaling, but the practitioner ought to verify this based on the individual soft-
ware package that they are implementing. Scaling is not necessarily used in a blanket 
manner, as binary or categorical features may not require scaling. 

There are various scaling techniques, such as standardization (Z-score normaliza-
tion), min–max scaling, robust scaling and logarithmic scaling; the latter of which 
is more meaningful in a road safety context when considering always-positive traits 
such as the number of crashes/SSMs occurring in an area or time period, temporal 
metrics such as TTC, or highly varying exposure metrics, such as segment length in 
different roads of an urban road network. 

Another good practice example is that, if the algorithm demands, one-hot encoding 
must be utilized to convert all data types to numeric values. Further nuances of 
conducting proper ML analyses will not be analysed here, as they fall beyond the 
scope of the present chapter. However, practitioners must be vigilant and refer to 
the respective sources and carefully implement all required steps before extracting 
results that might be biased, skewed or downright misleading. 

Nonetheless, despite the usefulness of ML for analytical tasks, when considering 
crash occurrence and severity, discovery of causality remains an ever-constant pursuit 
[34], a common theme in all road safety research. This is an especially pronounced 
problem in conflict-based studies, as ML does not offer any insights on causality and 
thus econometric methods have to be implemented [35]. 

3.2 Classification Tasks 

Several core algorithms with numerous variations have been proposed for classifica-
tion such as various forms of Neural Networks (NNs), Random Forest, Extreme 
Gradient Boosting (XGBoost), Support Vector Machines (SVM) [36]. Bayesian 
Networks, Decision Tree and K-Nearest Neighbor algorithms are relevant as well,
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albeit perhaps less frequently used as first preference. Arguably, some of the most 
archetypical applications of ML classification in road safety are (i) crash occurrence 
detection and (ii) injury severity classification and prediction. 

For crash occurrence detection, a study was dedicated to the comparison of the 
performance of several popular algorithms (i.e. k-nearest neighbor, Naive Bayes, 
Decision Tree, Random Forest, SVM, Artificial NN (ANN), and Deep NN (DNN) 
[37]) using real-time data from a freeway in Athens, Greece. It was concluded that 
the DNN had the most promising performance, outperforming other algorithms, and 
that the Naive Bayes model performed remarkably well given its simplicity. The 
importance of proper scaling was also echoed in that study. 

For injury severity predictions, some of the relevant studies have examined algo-
rithms such as SVM, ANN, KNN, C5.0, CART, and Random Forest, and concluded 
that Random Forest performs slightly better than the other algorithms [34, 38]. 

In any case, it is important to note that algorithmic performance is largely data-
driven and can change and also be influenced by biases in the data or alterations 
in data recording schemes. Therefore, there is not a ‘one-size-fits all’ algorithm, 
arguably even for not any given task. 

The occurrence of secondary crashes (i.e. crashes influenced by the appearance 
of a primary crash) has been examined as well by utilizing XGBoost, based on 
data from Florida, USA in a relevant study [39]. The respective model contained a 
notable feature engineering approach which utilized speed contour data in order to 
detect speed drops and thus detect the influence of a primary crash in the preceding 
segments. Moreover, by substituting crashes with conflicts, real-time SSM classifica-
tion can be conducted, offering a much more dynamic view of the road environment 
[35, 40]. 

Classification finds a range of applications in other tasks outlined by road safety 
studies, such as driver profiling, for instance with ANN and SVM [41], with possible 
applications as an early warning system. Another example would be the image-
recognition based detection of non-pedestrian anomalies in pedestrian walkways such 
as cars, cyclists, skaters, and similar obstacles, proposed by Pustokhina et al. [42]. 
The utilized algorithms featured two stages, involving preprocessing to remove noise 
in the data, followed by mask region convolutional neural networks (Mask-RCNN) 
augmented by densely connected networks (DenseNet). 

Classification is also very helpful when considering road safety countermeasures, 
such as real-time fatigue and distraction detection based on driver behavior, and 
additionally blindspot detection based on smartphone camera vision data based on 
customized integrated algorithms collectively termed ‘CarSafe’ [43]. 

When considering real-time datasets for classification, meaning that they contain 
uninterrupted temporal periods, it is important to note that the data will almost 
certainly be imbalanced, i.e. classes will be heavily unequal. A widely accepted 
definition of data imbalance is when one or more of the classes outclasses the others 
by a rate of 10–20%, which negatively impacts model performance and hinders 
learning. Since road crashes are, thankfully, rare events, the respective observational 
datasets contain very low numbers, and this is a very common issue that researchers 
have to overcome.
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The class imbalance issue is typically mitigated with data resampling methods 
(involving sampling part of the data and/or generating synthetic data to eliminate 
class imbalance), cost-sensitive learning and class weight and/or threshold tuning. A 
famous data imbalance correction technique is the synthetic minority oversampling 
technique (SMOTE), developed in earlier research [44]. In recent years, SMOTE 
has been applied successfully for crash occurrence detection, which is an ultimately 
binary problem via a real-time approach [45]. XGBoost algorithms showed a very 
high crash detection accuracy and sensitivity using data from Chicago, USA. The 
authors note that the temporal aggregation of traffic data was selected to maximize 
performance accuracy but should be reduced in order to predict crashes more rapidly. 

Class imbalance can be also noted in crash severity analyses, as fatalities are 
outclassed by slight/minor and severe/major injuries, and specifically to the slight 
injuries with a rate of about 10% when aggregate macroscopic data are considered. 
Multiclass predictions of injury severity have also been achieved aided by SMOTE, 
with a dramatic difference in accuracies and F1 scores across 6 tree-based algorithms 
compared to imbalanced training data [46]. 

Comparable classification problems, even on self-reported data, also benefit from 
the use of such techniques. For example, cyclist perception scores regarding safety 
were normalized with the K-means-SMOTE method in recent research [47]. In 
addition, conflict occurrence predictive tasks can benefit from SMOTE [40]. 

3.3 Regression Tasks 

Another classical application of ML tasks regards regression approaches of various 
rates and continuous numbers. Notably in road safety, regression is frequently 
conducted in count-based approaches, with algorithms that use Generalized Linear 
Models (GLMs) as their basis, typically within Poisson or Negative Binomial 
frameworks. 

Count-based regression has been implemented for modelling crash counts, for 
instance by applying decision tree regression (DTR) in VRU crashes using data from 
Florida, USA [48]. In addition to traditional predictor features, spatial features were 
of nearby traffic analysis zones were incorporated, improving the tree performance. 
Models were further refined into ensembles by using improvement techniques such 
as (i) Bagging, (ii) Random Forest overlaying and (iii) Gradient Boosting, with the 
latter models outperforming all others. 

Slightly earlier, crowdsourced data were used to conduct crash count prediction 
using Random Forest regression trained on crowdsourced data from Waze in Mary-
land, USA, and the respective heatmaps were also provided. The authors echoed 
the temporal richness of such data; although six months were collected, even one 
would have been sufficient for the analysis [49]. Due to the higher data availability 
provided by SSMs, it is easier to apply count-based approaches to measures such as 
harsh braking events or traffic conflicts, which yields interesting results especially 
within a spatial analysis context [50].
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Apart from counts, regression can also be performed on crash rates, albeit more 
rarely. Utilizing crash rates provides the benefit of integrating exposure, by consid-
ering relating parameters by which to divide the overall crash counts, like traffic 
volume, network length or a combination of the two, leading to crashes per vehicle-
kilometer, person-kilometer or similar approaches. This process enables more seam-
less (and fairer) comparison between outcomes and predictions of models in different 
areas and further enhances research transferability. Modelling of crash rates by demo-
graphic characteristics is also possible, shedding light on different relationships that 
may otherwise be unobserved (e.g. crashes in proximity to homes). Such a study was 
conducted recently using data from the United Kingdom [51]. 

Crash modification factors (CMFs) have been used for several decades as a 
straightforward and intuitive means to calculate the impact of network changes on 
future expected crash numbers based on past fluctuations. Studies have employed 
ML regression techniques such as multivariate adaptive regression splines (MARS), 
which were employed for CMF calculation, outperforming traditional Negative 
Binomial models [52]. MARS employs non-linear regression techniques to depict 
complex relationships between features in the analysis. 

It should be mentioned that algorithmically, regression tasks are more challenging 
than classification tasks, which is a reason why the latter are typically a first choice 
for researchers in the field. Regression tasks, however, have the potential of offering 
much more meaningful and actionable predictions, especially when their predictive 
capabilities are proven accurate. Providing evidence for a prediction in the form of: 
“in the next year, about 23 crashes (with the respective variance) will happen on Main 
Street” is more palatable compared to a phrasing of “in the next year, Main Street has 
is in the risk category of 15–25 crashes”, and much more preferable to “Main Street 
is in the high-risk group”. This approach makes it not only more comprehensive 
to non-technical authorities and stakeholders to understand, but also makes road 
safety planning strategies, effectiveness evaluation tools and methodologies such as 
Cost–Benefit Analyses (CBA) applicable in a more straightforward manner. 

3.4 Ranking and Clustering Tasks 

Individuals may not be easily defined by a single variable or parameter, or it may not 
be feasible or intended to do so for a specific approach. In such cases, clustering can 
be implemented, which is a common form of unsupervised learning used to form 
groups (clusters) among the data sample. 

For instance, it is informative to cluster drivers into different groups based on 
behavioral traits. Well-known psychological tools can be employed to provide data 
in such cases, such as the Driver Behavior Questionnaire (DBQ) and the Driver Skill 
Inventory (DSI) [53, 54]. A well-known, basic form is k-means cluster analysis, 
which can be used to profile drivers based on DBQ and DSI data [55]. 

Accordingly, infrastructure such as road segments or entire regions can be clus-
tered, offering insights on which parameters are the most crucial as to how the
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groups are formulated. In a study for regions of the Netherlands, for instance, it was 
mentioned that urbanization levels played the most important role when considering 
a simple clustering approach [56]. Regarding road segments, in a study in Florida, 
the clustering approach was utilized to mitigate heterogeneity which was present in 
the data. In other words, clusters served to maximize the within-group similarity and 
minimize the intra-group similarity [57]. 

When executing clustering, a highly important decision is the selection of the 
number of clusters. While there are various approaches, such as the Elbow Method, 
the Silhouette Score (possibly augmented by the Average Silhouette Width) and the 
examination of Gap Statistics, among others [58] expert knowledge will always play 
a role in separating groups, and, ultimately, cluster number selection for meaningful 
formulation of groups is partly an art. 

Applications comparable with the aforementioned are conducted and applied in 
the telematics industry, which has been transforming the insurance landscape in 
recent years, as new, dynamic ways to measure risk and rank locations and individuals 
become available through an array of newly developed technologies [59]. 

Ranking tasks can also be conducted indirectly, by analyzing target road safety 
variables via regression and/or classification and then ranking segments, regions or 
individuals by their performance. This can be achieved, for instance, with association 
rule mining, which can provide instances of simultaneous manifestation of specific 
attribute characteristics by analyzing the respective dataset [60, 61]. Such approaches 
are swift in calculation and can also integrate well with large-scale text mining, which 
is particularly useful when considering the exploitation of social media data for road 
safety purposes [62]. 

3.5 Explainable Artificial Intelligence 

In recent years, to further enhance algorithmic results, explainable Machine Learning 
models (often referred to as EXplainable Artificial Intelligence—XAI) have been 
implemented. XAI contains mechanisms that are model-agnostic. In other words, 
they are implemented over trained model outputs, and offer insights on how variables 
influence the final decision of the model, allowing researchers to draw additional 
levels of interpretation. 

A frequent application of XAI is SHapley Additive exPlanation (SHAP) values. 
Based on coalitional game theory, and specifically on a seminal study of [63], this 
method quantifies the prediction contribution of each variable by considering it a 
player in a random game. It is worth mentioning that SHAP values are meaningful 
both for classification and for regression tasks. This also holds within the road safety 
domain. 

Intuitively, SHAP values have been implemented for multiclass injury severity 
classification for crashes in relevant research [46, 64]. Remarkably, in the study [64], 
the highest-ranked features indicated by global SHAP analysis, were used as base to
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retrain algorithms that were previously tested but not as successful, a process which 
led to increases in predictive power and overall performance. 

As an alternative example, SHAP values have also been implemented during 
classification of instances of mobile phone distraction [65], denoting non-linear 
effects for several contributing variables that would not be easily detectable with 
function-based econometrics models. 

On the regression front, counts of different injury severity crashes have been 
analyzed with SHAP using the output of the XGBoost algorithm [66]. Results were 
illuminating, as not only the non-linear effect between several built environment 
variables was examined, due to the flexible tree-based structure of XGBoost, but 
also the different influence thresholds across which effects can vary were provided 
by SHAP. 

The Local Interpretable Model-agnostic Explanations (LIME) XAI methodology 
is also comparable and has been successfully interpreted paired with a text-mining 
approach feeding a Neural Network to identify factors influencing injury severity of 
heavy vehicle crashes. The authors further increased the scalability of their results 
by aggregating individual LIME explanations using cross-validation [67]. 

Lastly, Wen et al. [68] employed an array of XAI model techniques in order to 
compare their performance and produced a number of fruitful conclusions, including 
the fact that LIME is often limited to individual prediction-level analysis, and not 
more aggregate analysis, while SHAP is confined to modelling the interactions of 
only two factors at a time. The authors also consider Local Sensitivity Analysis 
(LSA) and Partial Dependence Plots (PDP), which they mention that, while they 
can adopt a dataset-wide approach, they assume independent distributions of all 
explanatory features. The use of more sophisticated ML models is also promoted, 
as they can convey the underlying interrelationships of the various included features 
more accurately. 

4 Artificial Intelligence Beyond Data and Modelling 

The broad uses of AI in transport and road safety extend much further than data 
wrangling and manipulation, and the subsequent modelling. Although arguably most 
of the contents of this chapter rely on data for automated decision-making, they are 
conceptually different than the aforementioned processes. 

4.1 Vehicle Movements and Trips 

Vehicle pathfinding is such a process, featuring high automation possibilities for 
industrial-scale applications, with the challenge being the maintenance of high road 
safety levels with manageable incidents, while observing the direction of Vision Zero 
for the elimination of fatalities. Interdisciplinary cooperation from highly specialized
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experts is required, as civil and transportation engineers discern and design the opti-
mized the logistic functions of each operational domain, while computer scientists 
materialize these requirements by optimizing pathfinding algorithms. 

Aided by AI, data-driven collision-avoidance functions of pathfinding are in 
the position to command more complete awareness of surrounding elements, 
autonomous, highly automated global and local control options, and more diverse 
transmission options. The latter become crucial in order to handle large volumes 
of data, especially if these are rapidly generated and/or continuous. It is noted in 
relevant literature that increased processing power will also be required, not only 
for the strict processing of data, but for learning and adaptation of user require-
ments in real-time or near-real-time, while safeguarding user privacy and personal 
data throughout the process. Hybrid traffic scenarios, with mixed autonomous and 
human-driven traffic, will pose their own challenges, as the fluidity of human behavior 
influences predictions adversely [69]. 

Collision-avoidance pathfinding algorithms can be broadly classified as 
kinematics-based, which use physics analytics on trajectory data [70] or maneuver-
based which use ML classification for specific driving maneuvers, for instance with 
Dynamic Bayesian Network (DBN) algorithms [71]. Combinations of the previous 
have been proposed as well. 

Special subdomains must also be considered. For instance, Xiang et al. [72] outline 
how this process can be applied within construction sites using Building Information 
Models (BIM). Their approach involved multilayer maps, with each layer concerning 
different domains of information, such as terrain navigational difficulty and the pres-
ence of fixed obstacles. Admittedly, the computational time of such approaches have 
to be considered, as with more layers they can increase radically, even for a more 
controlled environment such as a construction site. 

Routing (also known as route-finding) is a related example, in a more high-
level decision-making process using typically more aggregated data from more road 
segments. Routing began as a static concept, but subsequently the capability of inte-
grating real-time traffic and safety information was explored, leading to dynamic 
routing algorithms. However, robustness of predictions remains a constant challenge 
that future endeavors will have to reliably overcome. Moreover, the provision and 
availability of high resolution, reliable data remains a barrier which prevents the wider 
application for such algorithms. Task complexity is a critical factor once again, as 
the algorithms are called to make a conclusive decision within specific time-frames, 
due to the demands of the transportation processes [73].
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4.2 Strategic Uses of Artificial Intelligence 

In order for noteworthy results to materialize by effectively suppressing crash occur-
rence and injury severity, strategic planning and concerted efforts are required. Safe, 
road-worthy AI systems face significant challenges that are only hesitantly tackled 
by individual designers and need to be decisively addressed: 

i. Interfaceability; 
ii. Interoperability; 
iii. Timelessness; 
iv. Scalability. 

In that sense, it is critical not to view transport systems as individual, isolated silos, 
but rather as connected pools that need to be cooperative. Cooperative Intelligent 
Transport Systems (C-ITS) have been proposed as a way forward. To succeed, C-ITS 
will have to involve public and private partnership (PPP) and a dedicated vision. As 
the measures may involve sophisticated components, a main approach is to introduce 
them more gently and gradually to the public, possibly in dedicated testbeds or study 
areas [74]. However, this is a process which requires dedication and resilience to 
outside challenges, such as resistance to change or regulation disobedience. 

Notably, a key component of C-ITS is the design and operation of a functional 
Human–Machine Interface, which must be reasonable, intuitive and function well 
enough for experienced but also unfamiliar users of the road network. The ideal 
network should accommodate users that are modestly allocating their attention due to 
navigation demands or the possible lack of knowledge novice drivers, and have easily 
comprehensive imagery, with universally understood signs such as the wayfinding 
signs in airports. While well-trained C-ITS have a positive contribution regarding 
road safety, evaluating safety benefits from C-ITS inputs alone, without the input 
of additional sensors, can be a strategic challenge to overcome. Often the obtained 
data can be low in degrees of freedom (and thus analytic options), but this can be 
overcome by employing time-series options [75]. The selection and implementation 
of appropriate sensor recording devices and miscellaneous infrastructure and network 
is seen as an investment by researchers, but this has to be effectively communicated 
to stakeholders as well. 

The deployment of CAV-oriented technologies, such as Connected-Vehicle-to-
Everything (CV2X) technologies can be considered quite fragmented and left to the 
choices of individual Original Equipment Manufacturer (OEM), with possible cell-
phone network integration further requiring Mobile Network Operator involvement. 
This addition forms an even more disjoined overall picture, as the two groups appear 
to be divided in their prioritization of technological implementations. However, there 
is a lot of potential in the field, as 5G-supported Dedicated Short Range Commu-
nication (DSRC) and CV2X have shown considerable promise in crash prevention 
[76]. Therefore, it is evident that a more tactical design must be applied within a 
more hierarchical organization of road crash prevention strategies, which in most 
likelihood would entail another form of PPP to succeed.
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Furthermore, it is imperative to consider the strategic purpose of AI modelling, 
especially when aiming for sustainable approaches in road safety analysis. Very 
frequently, the overall strategic vision that research should be shifted towards is 
not directly addressed by researchers in the field. As AI-based technologies will 
always require oversight [77], it is critical that this is provided by highly qualified 
professionals with the necessary expertise. Therefore, a critical need is highlighted 
to train not only ML engineers or computer scientists, but transport and road safety 
experts, familiar with the mechanisms and the appropriate context, who would also 
have a thorough understanding of AI strategic objectives and functions, as well as 
case-specific ML contextual elements. 

The aforementioned tools, and other comparable ones, gradually become avail-
able to more road safety researchers, stakeholders and authorities providing estimates 
on crash risk, injuries and other related topics, without demanding exceedingly tech-
nical backgrounds to utilize their results and benefit from them. Undoubtedly, a large 
number of presented model configurations, including variables, model hyperparam-
eter structures and sequential combinations of ML tasks show very promising perfor-
mance, albeit on specific datasets. Overall, transferability capabilities are yet uncer-
tain for many of the methods, especially when parameters of uncertainty increase, 
for instance new areas, transport modes or road user cultures. 

5 Future Research Directions for AI-Powered Road Safety 

Based on the previous overview, and on the overall state of the relevant literature, a 
number of future research topics and directions can be gleaned, which all have the 
potential to benefit from AI-powered techniques. These topics are elaborated in the 
following sections. 

5.1 High-Impact Feature Engineering 

It is evident that the new wealth of big data that is presently generated may include 
several SSMs or other parameters which are all promising in order to shed light in 
the causes which cause road safety numbers to persist. A high-dimensional problem 
soon emerges, in which the type and number of variables, the selection of specific 
algorithms, the areas/individuals and scenarios to investigate, the possible inclusion 
of connected or automated vehicles, the potential inclusion of real-time compo-
nents are only some of the components to consider for the study designs of future 
research. Further to the previous, it is very likely that SSMs have different informa-
tive capacities and thus have optimization margins per crash and/or injury category 
accordingly.
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Moreover, researchers must consider the tradeoff between algorithmic accuracy 
and transferability of their proposed solution. An algorithm may be able to perfectly 
predict traffic conflict incidents in left turns for powered-two-wheelers based on 
aggressive behavior. However, its overall applicability and attractiveness as a policy-
based mechanism may be limited by its specific demands and approach. On the 
contrary, a comprehensive system may be very limiting regarding transferability and 
very costly to maintain, due to data demands. A common rule of thumb states that 
increased distance hinders transferability and scale ability, and the effects worsen 
when an approach moves across borders. Therefore, a multiple-criteria based explo-
ration and decision analysis is required to determine the most fruitful SSMs that can 
be obtained readily or be mined from available big data, and researchers have to 
prioritize, or create, the ones which are most highly impactful. 

Spatial analysis and mapping have also become more accessible in recent years, 
yielding unique visualization capabilities. Apart from a highly informative resource 
for stakeholders and authorities, even when only using appropriately extracted 
descriptive statistics of maps and SSMs, this approach can serve as a validation tool 
for the spatial distribution of crashes or conflicts as predicted by SSMs, an approach 
which is not frequently explored. Maps featuring real-time updates, high fidelity, and 
those that can incorporate flexible data structures, and/or in turn be incorporated in 
other applications, have competitive advantages over others. 

5.2 Crash and Injury Causality 

A promising research direction refers to the causality of crash occurrence and injury 
severity with the appropriate contributing factors, which can be variables from the 
classic road safety pillars of (i) driver, (ii) vehicle and (iii) road infrastructure or highly 
complex features such as parameters describing the interactions of road users (e.g. 
motorcycle maneuver trajectories, harsh deceleration profiles in angular conflicts, 
and so on). Causality, in other words the direct relationship between presence of a 
set of factors and the manifestation of a road crash or high injury phenomenon, can 
be enhanced by AI due to the different combinations of parameters to potentially 
investigate, and the highly non-linear interactions of many involved quantities. 

As an example, AI-supported agent-based simulation has been shown to yield 
interesting results in causal discovery and counterfactual reasoning for crash gener-
ation [78]. In another approach, using data from urban interstates in Texas, a recent 
study combined Granger causality analysis with the most popular ML algorithms 
(DT, RF, XGBoost and DNN) and identified an array of crash contributing factors, 
however they note that the heavily imbalanced nature of their data leads to biases 
[79]. Therefore, high amounts of precise efforts are required from future research to 
train and, most importantly, validate causal ML algorithms from existing in-depth 
datasets in order to train reliable AI tools. Undoubtedly, as a judicial event, each 
crash must be investigated individually. However, crash and injury mitigation efforts 
will highly benefit from determining causal factors with high accuracy.
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Crash (or even traffic conflict) causality and its investigations will become increas-
ingly relevant in the future, as the advent of CAVs may partially remove responsibility 
from drivers, or, depending on the legal context, add additional responsibility layers 
to OEMs. Some approaches have been proposed for the rapid and automated collec-
tion of data relaying the causing factors of incidents as detected by CAVs. This 
objective is mainly assisted by assessing the performance of autonomous driving 
systems (ADSs). One such venue is the analysis of feature extraction based on the 
messages that the various systems exchange with each other, after removal of the 
necessary noise data [80]. 

However, in line with the rest of CAV developments, it is crucial to underline that a 
centralized system must be eventually established. Otherwise, the technical disputes 
regarding causation, and thus fault, in each crash will be overwhelming, especially 
given that OEM equipment and also algorithms will be directly in competition with 
each other. As a consequence, the research for the optimal high-level mechanisms 
is still ongoing, as is the search for the best performing features to be engineered. 
Both pillars will have to be not only representative of the safety profile of the circu-
lating CAVs, but also manageable regarding their volume and able to be analyzed in 
real-time conditions as decisions will need to be taken instantaneously. Once again, 
interdisciplinary knowledge of highly specialized computer science applied in the 
road safety domain will be required. 

Lastly, it should be mentioned that, due to the frequently high data demands of ML 
methods, there is presently very little research conducted on the effectiveness of road 
safety interventions and countermeasures. It is becoming gradually more feasible, 
however, to install sensors and establish data collection schemes in order to obtain the 
necessary data. Therefore, the completely unexplored field of generating AI dynamic 
feedback loops on the various impacts of road safety measures on selected SSMs, 
and, in the longer term, crashes and casualties, should emerge soon, and would be a 
valuable research direction. 

5.3 Ethics in Artificial Intelligence 

It is widely recognized that AI technologies should adhere to ethical design values 
such as explainability, inclusiveness, fairness and justice [81]. However, the definition 
and management of issues related to ethics and fairness, which are inherently human-
oriented concepts, in AI algorithms is a complex, challenging matter. 

The previous sections outline the value of added data and new technologies in AI 
research. There are huge discrepancies globally, however, in terms of technological 
readiness and overall degrees of industrialization. Even within a region, there are 
often deprived areas that lack the funds or development to keep up with their peers. 
Therefore, prioritizing the already relatively safer heavily developed countries or 
areas, introduces a new set of attention biases to countering the issue of crashes and 
casualties, which transcends borders to the degree it has been termed as a constant
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‘global pandemic’. Care should be taken by research to include, and ideally priori-
tize, the most deprived regions globally. In order to achieve that, new, transferable 
and actionable research results are needed, which the developing world is presently 
lacking. 

Therefore, it stands to reason that ethics and value-oriented engineering are 
elevated as a new dimension, integrated and considered to be equally worth to finan-
cial, temporal, bias removal or similar constraints. Thus, the quantification of ethical 
constraints has to be further investigated in future research. Emphasis should be 
placed on collaborations across countries for the integration of all road realities and 
road safety and traffic cultures, which comprise elements influencing adherence to 
laws and regulations, aggressiveness and overall road user performance. 

Conversely, relevant data have to be made available from users without violating 
their privacy, and by granting them actual and perceived freedom of movement. 
Research efforts have to cultivate a relationship of trust with the road users, and to 
successfully transmit the message that AI methods demand data but offer higher road 
safety potential improvements in turn. Absence of monitoring and accountability in 
administrative authorities frequently seriously limits cooperation of the public due 
to mistrust and stagnates improvements in road safety performance. To counter these 
worries, acceptance and public trust ought to be increased by establishing monitoring 
and reporting processes. 

6 Conclusions 

Artificial Intelligence (AI) serves as a catalyst for unlocking immense road safety 
potential for further advancements. AI has led to the creation of large-scale, rapidly 
generated big datasets with ease and seamlessness. Quickly developing Machine 
Learning (ML) algorithms have disclosed new, complex interrelationships latent in 
within road safety analyses, and have in parallel enabled a vast array of new options 
for road safety modelling, shedding further light on non-linear effects governing 
road user interactions. Meanwhile the addition of Explainable Artificial Intelligence 
(XAI) has provided higher interpretability of ML models by outlining how each 
individual parameter influences model outcome. 

The increased methodological and computational complexities render the training 
of specialized road safety-oriented professionals with in-depth computer science 
knowledge, who will be able to understand the mechanisms of the transport network, 
to create AI that is fair and bias-free, to navigate the rising challenges of big data 
and to successfully communicate the benefits of AI to the broader society. More-
over, funding must also be available to road safety multi-disciplinary professionals 
to conduct post-intervention assessments and validate road safety countermeasure 
effectiveness and verify or re-calibrate the outputs of risk prediction tools. 

Apart from professional training, it is critical to foster higher degrees of knowledge 
exchange across all various subfields. For instance, data fusion knowledge and feature
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engineering lessons learned from telematics-based AI can provide for the advent of 
CAVs and Connected, Cooperative and Automated Mobility (CCAM). 

Furthermore, there is a need to balance carefully between accurate road user 
recording and concerns of the public against to privacy disruptions, observing 
standing legislations such as GDPR and AI-based control without human over-
sight. To assuage these worries, multilevel and more frequent dialogue channels 
must be established between industrial and technical data holders and policymakers 
for standardization and openness of data. 

References 

1. World Health Organization—WHO: Global Status Report on Road Safety—2023 
(2018). URL: https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/ 
global-status-report-on-road-safety-2023 

2. Vision Zero Network: Vision Zero Official Website (2024). URL: https://visionzeronetwork. 
org/about/vision-zero-network/ 

3. European Commission: Road Safety Thematic Report—Safe System Approach. European 
Road Safety Observatory. European Commission, Directorate General for Transport, Brussels 
(2022) 

4. Levitate Policy Support Tool for Cooperative, Connected and Automated Mobility (CCAM) 
(2023). URL: https://www.ccam-impacts.eu/ 

5. Torbaghan, M.E., Sasidharan, M., Reardon, L., Muchanga-Hvelplund, L.C.: Understanding the 
potential of emerging digital technologies for improving road safety. Accid. Anal. Prev. 166, 
106543 (2022). https://doi.org/10.1016/j.aap.2021.106543 

6. Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in 
transport: an overview. Sustainability 11(1), 189 (2019). https://doi.org/10.3390/su11010189 

7. Bhattacharya, S., Jha, H., Nanda, R.P.: Application of IoT and artificial intelligence in road 
safety. In: 2022 Interdisciplinary Research in Technology and Management (IRTM), pp. 1–6 
(2022). https://doi.org/10.1109/IRTM54583.2022.9791529 

8. Tarko, A.P.: Surrogate measures of safety. In: Safe Mobility: Challenges, Methodology and 
Solutions, vol. 11, pp. 383–405. Emerald Publishing Limited (2018). https://doi.org/10.1108/ 
S2044-994120180000011019 

9. Nikolaou, D., Ziakopoulos, A., Yannis, G.: A review of surrogate safety measures uses in 
historical crash investigations. Sustainability 15(9), 7580 (2023). https://doi.org/10.3390/su1 
5097580 

10. Sagiroglu, S., Sinanc, D.: Big data: a review. In: 2013 International Conference on Collaboration 
Technologies and Systems (CTS), pp. 42–47. IEEE (2013). https://doi.org/10.1109/CTS.2013. 
6567202 

11. Richards, N.M., King, J.H.: Three paradoxes of big data. Stan. Law Rev. 66, 41 (2013). URL: 
https://www.stanfordlawreview.org/online/privacy-and-big-data-three-paradoxes-of-big-data/ 

12. Kelley, K., Clark, B., Brown, V., Sitzia, J.: Good practice in the conduct and reporting of 
survey research. Int. J. Qual. Health Care 15(3), 261–266 (2003). https://doi.org/10.1093/int 
qhc/mzg031 

13. Rosenman, R., Tennekoon, V., Hill, L.G.: Measuring bias in self-reported data. Int. J. Behav. 
Healthcare Res. 2(4), 320–332 (2011). https://doi.org/10.1504/IJBHR.2011.043414 

14. Choi, B.C., Pak, A.W.: Peer reviewed: a catalog of biases in questionnaires. Prev. Chronic Dis. 
2(1), A13, 15670466 (2005) 

15. Wang, C., Xie, Y., Huang, H., Liu, P.: A review of surrogate safety measures and their appli-
cations in connected and automated vehicles safety modeling. Accid. Anal. Prev. 157, 106157 
(2021). https://doi.org/10.1016/j.aap.2021.106157

https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
https://visionzeronetwork.org/about/vision-zero-network/
https://visionzeronetwork.org/about/vision-zero-network/
https://www.ccam-impacts.eu/
https://doi.org/10.1016/j.aap.2021.106543
https://doi.org/10.3390/su11010189
https://doi.org/10.1109/IRTM54583.2022.9791529
https://doi.org/10.1108/S2044-994120180000011019
https://doi.org/10.1108/S2044-994120180000011019
https://doi.org/10.3390/su15097580
https://doi.org/10.3390/su15097580
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1109/CTS.2013.6567202
https://www.stanfordlawreview.org/online/privacy-and-big-data-three-paradoxes-of-big-data/
https://doi.org/10.1093/intqhc/mzg031
https://doi.org/10.1093/intqhc/mzg031
https://doi.org/10.1504/IJBHR.2011.043414
https://doi.org/10.1016/j.aap.2021.106157


Key Artificial Intelligence and Digitalization Solutions Towards Vision … 23

16. Tarko, A.P.: Estimating the expected number of crashes with traffic conflicts and the Lomax 
distribution—a theoretical and numerical exploration. Accid. Anal. Prev. 113, 63–73 (2018). 
https://doi.org/10.1016/j.aap.2018.01.008 

17. Oikonomou, M.G., Ziakopoulos, A., Chaudhry, A., et al.: From conflicts to crashes: simulating 
macroscopic connected and automated driving vehicle safety. Accid. Anal. Prev. 187, 107087 
(2023). https://doi.org/10.1016/j.aap.2023.107087 

18. Jiang, C., He, J., Zhu, S., et al.: Injury-based surrogate resilience measure: assessing the post-
crash traffic resilience of the urban roadway tunnels. Sustainability 15(8), 6615 (2023). https:// 
doi.org/10.3390/su15086615 

19. Ambros, J., Jurewicz, C., Chevalier, A., Valentová, V.: Speed-related surrogate measures of road 
safety based on floating car data. In: Macioszek, E., Sierpiński, E. (eds.) Research Methods in 
Modern Urban Transportation Systems and Networks. LNNS, vol. 207, pp. 129–144. Springer 
(2021) 

20. Outay, F., Mengash, H.A., Adnan, M.: Applications of unmanned aerial vehicle (UAV) in road 
safety, traffic and highway infrastructure management: recent advances and challenges. Transp. 
Res. Part A Policy Pract. 141, 116–129 (2020). https://doi.org/10.1016/j.tra.2020.09.018 

21. Ziakopoulos, A.: Spatial analysis of harsh driving behavior events in urban networks using high-
resolution smartphone and geometric data. Accid. Anal. Prev. 157, 106189 (2021). https://doi. 
org/10.1016/j.aap.2021.106189 

22. iRAP: International Road Assessment Programme (2021). URL: http://www.irap.net 
23. Dragomanovits, A., Deliali, A., Tripodi, A., et al.: A methodology for the network-wide, in-

built safety assessment of primary roads. Transp. Res. Procedia 72, 1637–1644 (2023). https:// 
doi.org/10.1016/j.trpro.2023.11.635 

24. Lin, Y., Li, R.: Real-time traffic accidents post-impact prediction: based on crowdsourcing 
data. Accid. Anal. Prev. 145, 105696 (2020). https://doi.org/10.1016/j.aap.2020.105696 

25. Hoseinzadeh, N., Arvin, R., Khattak, A.J., Han, L.D.: Integrating safety and mobility for 
pathfinding using big data generated by connected vehicles. J. Intell. Transp. Syst. 24(4), 
404–420 (2020). https://doi.org/10.1080/15472450.2019.1699077 

26. Li, X., Dadashova, B., Yu, S., Zhang, Z.: Rethinking highway safety analysis by leveraging 
crowdsourced Waze data. Sustainability 12(23), 10127 (2020). https://doi.org/10.3390/su1223 
10127 

27. Goodchild, M.F.: Commentary: whither VGI? GeoJournal 72(3), 239–244 (2008). https://doi. 
org/10.1007/s10708-008-9190-4 

28. Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 
7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80 

29. Haklay, M.: How good is volunteered geographical information? A comparative study of Open-
StreetMap and Ordnance Survey datasets. Environ. Plann. B Plann. Des. 37(4), 682–703 (2010). 
https://doi.org/10.1068/b3509 

30. Zhang, H., Malczewski, J.: Quality evaluation of volunteered geographic information: the case 
of OpenStreetMap. In: Campelo, C., Bertolotto, M., Corcoran, P. (eds.) Volunteered Geographic 
Information and the Future of Geospatial Data, pp. 1173–1201. IGI Global (2019). https://doi. 
org/10.4018/978-1-5225-2446-5.ch002 

31. iRAP: Ai-RAP. Official Website (2024). URL: https://irap.org/project/ai-rap/ 
32. Silva, P.B., Andrade, M., Ferreira, S.: Machine learning applied to road safety modeling: a 

systematic literature review. J. Traffic Transp. Eng. 7(6), 775–790 (2020). https://doi.org/10. 
1016/j.jtte.2020.07.004 

33. Kuhn, M., Wing, J., Weston, S., et al.: Package ‘caret’. R J. 223(7) (2020). URL: https://cran. 
r-project.org/web/packages/caret/caret.pdf 

34. Santos, K., Dias, J.P., Amado, C.: A literature review of machine learning algorithms for crash 
injury severity prediction. J. Saf. Res. 80, 254–269 (2022). https://doi.org/10.1016/j.jsr.2021. 
12.007 

35. Yuan, C., Li, Y., Huang, H., et al.: Using traffic flow characteristics to predict real-time conflict 
risk: a novel method for trajectory data analysis. Anal. Methods Accid. Res. 35, 100217 (2022). 
https://doi.org/10.1016/j.amar.2022.100217

https://doi.org/10.1016/j.aap.2018.01.008
https://doi.org/10.1016/j.aap.2023.107087
https://doi.org/10.3390/su15086615
https://doi.org/10.3390/su15086615
https://doi.org/10.1016/j.tra.2020.09.018
https://doi.org/10.1016/j.aap.2021.106189
https://doi.org/10.1016/j.aap.2021.106189
http://www.irap.net
https://doi.org/10.1016/j.trpro.2023.11.635
https://doi.org/10.1016/j.trpro.2023.11.635
https://doi.org/10.1016/j.aap.2020.105696
https://doi.org/10.1080/15472450.2019.1699077
https://doi.org/10.3390/su122310127
https://doi.org/10.3390/su122310127
https://doi.org/10.1007/s10708-008-9190-4
https://doi.org/10.1007/s10708-008-9190-4
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1068/b3509
https://doi.org/10.4018/978-1-5225-2446-5.ch002
https://doi.org/10.4018/978-1-5225-2446-5.ch002
https://irap.org/project/ai-rap/
https://doi.org/10.1016/j.jtte.2020.07.004
https://doi.org/10.1016/j.jtte.2020.07.004
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://doi.org/10.1016/j.jsr.2021.12.007
https://doi.org/10.1016/j.jsr.2021.12.007
https://doi.org/10.1016/j.amar.2022.100217


24 A. Ziakopoulos and G. Yannis

36. Iranitalab, A., Khattak, A.: Comparison of four statistical and machine learning methods for 
crash severity prediction. Accid. Anal. Prev. 108, 27–36 (2017). https://doi.org/10.3390/com 
puters11050080 

37. Theofilatos, A., Chen, C., Antoniou, C.: Comparing machine learning and deep learning 
methods for real-time crash prediction. Transp. Res. Rec. 2673(8), 169–178 (2019). https:// 
doi.org/10.1177/0361198119841571 

38. Sarkar, S., Pramanik, A., Maiti, J., Reniers, G.: Predicting and analyzing injury severity: a 
machine learning-based approach using class-imbalanced proactive and reactive data. Saf. Sci. 
125, 104616 (2020). https://doi.org/10.1016/j.ssci.2020.104616 

39. Li, P., Abdel-Aty, M.: A hybrid machine learning model for predicting real-time secondary 
crash likelihood. Accid. Anal. Prev. 165, 106504 (2022). https://doi.org/10.1016/j.aap.2021. 
106504 

40. Orsini, F., Gecchele, G., Rossi, R., Gastaldi, M.: A conflict-based approach for real-time 
road safety analysis: comparative evaluation with crash-based models. Accid. Anal. Prev. 161, 
106382 (2021). https://doi.org/10.1016/j.aap.2021.106382 

41. Halim, Z., Kalsoom, R., Baig, A.R.: Profiling drivers based on driver dependent vehicle driving 
features. Appl. Intell. 44(3), 645–664 (2016). https://doi.org/10.1007/s10489-015-0722-6 

42. Pustokhina, I.V., Pustokhin, D.A., Vaiyapuri, T., et al.: An automated deep learning based 
anomaly detection in pedestrian walkways for vulnerable road users safety. Saf. Sci. 142, 
105356 (2021). https://doi.org/10.1016/j.ssci.2021.105356 

43. You, C.W., Lane, N.D., Chen, F., et al.: CarSafe app: alerting drowsy and distracted drivers using 
dual cameras on smartphones. In: MobiSys ‘13: Proceeding of the 11th Annual International 
Conference on Mobile Systems, Applications, and Services, June 2013, pp. 13–26. https://doi. 
org/10.1145/2462456.2465428 

44. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-
sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.48550/arXiv. 
1106.1813 

45. Parsa, A.B., Movahedi, A., Taghipour, H., et al.: Toward safer highways, application of 
XGBoost and SHAP for real-time accident detection and feature analysis. Accid. Anal. Prev. 
136, 105405 (2020). https://doi.org/10.1016/j.aap.2019.105405 

46. Ahmed, S., Hossain, M.A., Ray, S.K., et al.: A study on road accident prediction and 
contributing factors using explainable machine learning models: analysis and performance. 
Transp. Res. Interdiscip. Perspect. 19, 100814 (2023). https://doi.org/10.1016/j.trip.2023. 
100814 

47. Zeng, Q., Gong, Z., Wu, S., et al.: Measuring cyclists’ subjective perceptions of the street riding 
environment using K-means SMOTE-RF model and street view imagery. Int. J. Appl. Earth 
Obs. Geoinf. 128, 103739 (2024). https://doi.org/10.1016/j.jag.2024.103739 

48. Rahman, M.S., Abdel-Aty, M., Hasan, S., Cai, Q.: Applying machine learning approaches to 
analyze the vulnerable road-users’ crashes at statewide traffic analysis zones. J. Saf. Res. 70, 
275–288 (2019). https://doi.org/10.1016/j.jsr.2019.04.008 

49. Flynn, D.F., Gilmore, M.M., Sudderth, E.A.: Estimating traffic crash counts using crowdsourced 
data: pilot analysis of 2017 Waze data and police accident reports in Maryland (No. DOT-
VNTSC-BTS-19-01). Volpe National Transportation Systems Center (US) (2018) 

50. Ziakopoulos, A., Vlahogianni, E., Antoniou, C., Yannis, G.: Spatial predictions of harsh driving 
events using statistical and machine learning methods. Saf. Sci. 150, 105722 (2022). https:// 
doi.org/10.1016/j.ssci.2022.105722 

51. McCarty, D., Kim, H.W.: Risky behaviors and road safety: an exploration of age and gender 
influences on road accident rates. PLoS ONE 19(1), e0296663 (2024). https://doi.org/10.1371/ 
journal.pone.0296663 

52. Haleem, K., Gan, A., Lu, J.: Using multivariate adaptive regression splines (MARS) to develop 
crash modification factors for urban freeway interchange influence areas. Accid. Anal. Prev. 
55, 12–21 (2013). https://doi.org/10.1016/j.aap.2013.02.018 

53. Martinussen, L.M., Møller, M., Prato, C.G.: Assessing the relationship between the driver 
behavior questionnaire and the driver skill inventory: revealing sub-groups of drivers. Transp. 
Res. Part F Traffic Psychol. Behav. 26, 82–91 (2014). https://doi.org/10.1016/j.trf.2014.06.008

https://doi.org/10.3390/computers11050080
https://doi.org/10.3390/computers11050080
https://doi.org/10.1177/0361198119841571
https://doi.org/10.1177/0361198119841571
https://doi.org/10.1016/j.ssci.2020.104616
https://doi.org/10.1016/j.aap.2021.106504
https://doi.org/10.1016/j.aap.2021.106504
https://doi.org/10.1016/j.aap.2021.106382
https://doi.org/10.1007/s10489-015-0722-6
https://doi.org/10.1016/j.ssci.2021.105356
https://doi.org/10.1145/2462456.2465428
https://doi.org/10.1145/2462456.2465428
https://doi.org/10.48550/arXiv.1106.1813
https://doi.org/10.48550/arXiv.1106.1813
https://doi.org/10.1016/j.aap.2019.105405
https://doi.org/10.1016/j.trip.2023.100814
https://doi.org/10.1016/j.trip.2023.100814
https://doi.org/10.1016/j.jag.2024.103739
https://doi.org/10.1016/j.jsr.2019.04.008
https://doi.org/10.1016/j.ssci.2022.105722
https://doi.org/10.1016/j.ssci.2022.105722
https://doi.org/10.1371/journal.pone.0296663
https://doi.org/10.1371/journal.pone.0296663
https://doi.org/10.1016/j.aap.2013.02.018
https://doi.org/10.1016/j.trf.2014.06.008


Key Artificial Intelligence and Digitalization Solutions Towards Vision … 25

54. Liu, J., Wang, C., Liu, Z., et al.: Drivers’ risk perception and risky driving behavior under 
low illumination conditions: modified driver behavior questionnaire (DBQ) and driver skill 
inventory (DSI). J. Adv. Transp. 2021, 1–13 (2021). https://doi.org/10.1155/2021/5568240 

55. Shirmohammadi, H., Hadadi, F., Saeedian, M.: Clustering analysis of drivers based on behav-
ioral characteristics regarding road safety. Int. J. Civ. Eng. 17, 1327–1340 (2019). https://doi. 
org/10.1007/s40999-018-00390-2 

56. Aarts, L.T., Houwing, S.: Benchmarking road safety performance by grouping local territories: 
a study in the Netherlands. Transp. Res. Part A Policy Pract. 74, 174–185 (2015). https://doi. 
org/10.1016/j.tra.2015.02.008 

57. Lu, J., Gan, A., Haleem, K., Wu, W.: Clustering-based roadway segment division for the 
identification of high-crash locations. J. Transp. Saf. Secur. 5(3), 224–239 (2013). https://doi. 
org/10.1080/19439962.2012.730118 

58. Mirkin, B.: Choosing the number of clusters. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 
1(3), 252–260 (2011). https://doi.org/10.1002/widm.15 

59. Ziakopoulos, A., Petraki, V., Kontaxi, A., Yannis, G.: The transformation of the insurance 
industry and road safety by driver safety behaviour telematics. Case Stud. Transp. Policy 
10(4), 2271–2279 (2022). https://doi.org/10.1016/j.cstp.2022.10.011 

60. Jiang, F., Yuen, K.K.R., Lee, E.W.M., Ma, J.: Analysis of run-off-road accidents by asso-
ciation rule mining and geographic information system techniques on imbalanced datasets. 
Sustainability 12(12), 4882 (2020). https://doi.org/10.3390/su12124882 

61. Meißner, K., Rieck, J.: Strategic planning support for road safety measures based on accident 
data mining. IATSS Res. 46(3), 427–440 (2022). https://doi.org/10.1016/j.iatssr.2022.06.001 

62. Yu, S., Jia, Y., Sun, D.: Identifying factors that influence the patterns of road crashes using 
association rules: a case study from Wisconsin, United States. Sustainability 11(7), 1925 (2019). 
https://doi.org/10.3390/su11071925 

63. Shapley, L.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions 
to the Theory of Games. Ann. Math. Study 28, 307–317 (1953) 

64. Ma, Z., Mei, G., Cuomo, S.: An analytic framework using deep learning for prediction of traffic 
accident injury severity based on contributing factors. Accid. Anal. Prev. 160, 106322 (2021). 
https://doi.org/10.1016/j.aap.2021.106322 

65. Ziakopoulos, A., Kontaxi, A., Yannis, G.: Analysis of mobile phone use engagement during 
naturalistic driving through explainable imbalanced machine learning. Accid. Anal. Prev. 181, 
106936 (2023). https://doi.org/10.1016/j.aap.2022.106936 

66. Yang, C., Chen, M., Yuan, Q.: The application of XGBoost and SHAP to examining the factors 
in freight truck-related crashes: an exploratory analysis. Accid. Anal. Prev. 158, 106153 (2021). 
https://doi.org/10.1016/j.aap.2021.106153 

67. Arteaga, C., Paz, A., Park, J.W.: Injury severity on traffic crashes: a text mining with an 
interpretable machine-learning approach. Saf. Sci. 132, 104988 (2020). https://doi.org/10.1016/ 
j.ssci.2020.104988 

68. Wen, X., Xie, Y., Jiang, L., et al.: On the interpretability of machine learning methods in 
crash frequency modeling and crash modification factor development. Accid. Anal. Prev. 168, 
106617 (2022). https://doi.org/10.1016/j.aap.2022.106617 

69. Fu, Y., Li, C., Yu, F., et al.: A survey of driving safety with sensing, vehicular communications, 
and artificial intelligence-based collision avoidance. IEEE Trans. Intell. Transp. Syst. 23(7), 
6142–6163 (2021). https://doi.org/10.1109/TITS.2021.3083927 

70. Berntorp, K.: Joint wheel-slip and vehicle-motion estimation based on inertial, GPS, and wheel-
speed sensors. IEEE Trans. Control Syst. Technol. 24(3), 1020–1027 (2015). https://doi.org/ 
10.1109/TCST.2015.2470636 

71. Gindele, T., Brechtel, S., Dillmann, R.: Learning driver behavior models from traffic observa-
tions for decision making and planning. IEEE Intell. Transp. Syst. Mag. 7(1), 69–79 (2015). 
https://doi.org/10.1109/MITS.2014.2357038 

72. Xiang, Y., Liu, K., Su, T., et al.: An extension of BIM using AI: a multi working-machines 
pathfinding solution. IEEE Access 9, 124583–124599 (2021). https://doi.org/10.48550/arXiv. 
2105.06635

https://doi.org/10.1155/2021/5568240
https://doi.org/10.1007/s40999-018-00390-2
https://doi.org/10.1007/s40999-018-00390-2
https://doi.org/10.1016/j.tra.2015.02.008
https://doi.org/10.1016/j.tra.2015.02.008
https://doi.org/10.1080/19439962.2012.730118
https://doi.org/10.1080/19439962.2012.730118
https://doi.org/10.1002/widm.15
https://doi.org/10.1016/j.cstp.2022.10.011
https://doi.org/10.3390/su12124882
https://doi.org/10.1016/j.iatssr.2022.06.001
https://doi.org/10.3390/su11071925
https://doi.org/10.1016/j.aap.2021.106322
https://doi.org/10.1016/j.aap.2022.106936
https://doi.org/10.1016/j.aap.2021.106153
https://doi.org/10.1016/j.ssci.2020.104988
https://doi.org/10.1016/j.ssci.2020.104988
https://doi.org/10.1016/j.aap.2022.106617
https://doi.org/10.1109/TITS.2021.3083927
https://doi.org/10.1109/TCST.2015.2470636
https://doi.org/10.1109/TCST.2015.2470636
https://doi.org/10.1109/MITS.2014.2357038
https://doi.org/10.48550/arXiv.2105.06635
https://doi.org/10.48550/arXiv.2105.06635


26 A. Ziakopoulos and G. Yannis

73. Sohrabi, S., Weng, Y., Das, S., Paal, S.G.: Safe route-finding: a review of literature and future 
directions. Accid. Anal. Prev. 177, 106816 (2022). https://doi.org/10.1016/j.aap.2022.106816 

74. Solodkiy, A., Yenokayev, V.: Cooperative ITS—a strategic way to ensure road safety. Transp. 
Res. Procedia 20, 630–634 (2017). https://doi.org/10.1016/j.trpro.2017.01.102 

75. Elhenawy, M., Bond, A., Rakotonirainy, A.: C-ITS safety evaluation methodology based on 
cooperative awareness messages. In: 21st International Conference on Intelligent Transporta-
tion Systems (ITSC), pp. 2471–2477. IEEE (2018). https://doi.org/10.1109/ITSC.2018.856 
9417 

76. Tong, J., Nassir, N., Lavieri, P., et al.: Putting the connectivity in C-ITS—investigating pathways 
to accelerate the uptake of road safety and efficiency technologies. Literature Review, pp. 1–49. 
ITS Australia (2020). URL: https://cms.its-australia.com.au/assets/images/PDFs/1-Literature-
Review.pdf 

77. Vinuesa, R., Azizpour, H., Leite, I., et al.: The role of artificial intelligence in achieving the 
sustainable development goals. Nat. Commun. 11(1), 1–10 (2020). https://doi.org/10.1038/s41 
467-019-14108-y 

78. McDuff, D., Song, Y., Lee, J., et al.: CausalCity: complex simulations with agency for causal 
discovery and reasoning. In: Conference on Causal Learning and Reasoning, pp. 559–575. 
PMLR (2022). https://doi.org/10.48550/arXiv.2106.13364 

79. Chakraborty, M., Gates, T.J., Sinha, S.: Causal analysis and classification of traffic crash injury 
severity using machine learning algorithms. Data Sci. Transp. 5(2), 12 (2023). https://doi.org/ 
10.1007/s42421-023-00076-9 

80. Sun, H., Poskitt, C.M., Sun, Y., et al.: ACAV: a framework for automatic causality analysis in 
autonomous vehicle accident recordings. In: Proceedings of the IEEE/ACM 46th International 
Conference on Software Engineering, vol. 102, pp. 1–13 (2024). https://doi.org/10.1145/359 
7503.3639175 

81. United Nations General Assembly: Roadmap for Digital Cooperation: Implementation of 
the Recommendations of the High-Level Panel on Digital Cooperation. Report of the 
Secretary-General (2020). URL: https://documents.un.org/doc/undoc/gen/n20/102/51/pdf/n20 
10251.pdf?token=30TdIcBZaXYI1qcEz4&fe=true

https://doi.org/10.1016/j.aap.2022.106816
https://doi.org/10.1016/j.trpro.2017.01.102
https://doi.org/10.1109/ITSC.2018.8569417
https://doi.org/10.1109/ITSC.2018.8569417
https://cms.its-australia.com.au/assets/images/PDFs/1-Literature-Review.pdf
https://cms.its-australia.com.au/assets/images/PDFs/1-Literature-Review.pdf
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.48550/arXiv.2106.13364
https://doi.org/10.1007/s42421-023-00076-9
https://doi.org/10.1007/s42421-023-00076-9
https://doi.org/10.1145/3597503.3639175
https://doi.org/10.1145/3597503.3639175
https://documents.un.org/doc/undoc/gen/n20/102/51/pdf/n2010251.pdf%3Ftoken%3D30TdIcBZaXYI1qcEz4%26fe%3Dtrue
https://documents.un.org/doc/undoc/gen/n20/102/51/pdf/n2010251.pdf%3Ftoken%3D30TdIcBZaXYI1qcEz4%26fe%3Dtrue

	 Key Artificial Intelligence and Digitalization Solutions Towards Vision Zero in Road Safety
	1 On the Issue of Using AI to Improve Traffic Conditions
	2 Big Data, Broad Horizons
	2.1 Big Data Sources
	2.2 Big Data Biases
	2.3 Big Data Openness
	2.4 Big Data as Surrogate Safety Measures
	2.5 Big Data and Crowdsourcing

	3 Machine Learning in Road Safety
	3.1 Machine Learning and Its Scopes
	3.2 Classification Tasks
	3.3 Regression Tasks
	3.4 Ranking and Clustering Tasks
	3.5 Explainable Artificial Intelligence

	4 Artificial Intelligence Beyond Data and Modelling
	4.1 Vehicle Movements and Trips
	4.2 Strategic Uses of Artificial Intelligence

	5 Future Research Directions for AI-Powered Road Safety
	5.1 High-Impact Feature Engineering
	5.2 Crash and Injury Causality
	5.3 Ethics in Artificial Intelligence

	6 Conclusions
	References


