TRANSPORT RESEARCH ARENA

LISBON 2022

Traffic & environmental impact assessment under distinct operational speeds for automated shuttle bus services

Maria Oikonomou

Together with:

virtual 🛟 vehicle

Sekadakis, M., Katrakazas, C., Hillebrand, J., Vlahogianni, E., Yannis, G.

The SHOW project

Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

• SHOW Partners:

70 partners from 13 EU-countries

- Duration of the project: 48 months (January 2020 - January 2024)
- Framework Program:

Horizon 2020 - The EU Union Framework Programme for Research and Innovation -Mobility for Growth

show-project.eu

Introduction

Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

- Connected and Autonomous Vehicles (CAVs) are expected to change transportation systems fundamentally by increasing aspects such as road capacity and fuel efficiency, and decreasing environmental emissions.
- Connected Automated Transport Systems (CATS) are expected to be the first to align with their large-scale business cases by enhancing urban transportation activities and making transit systems more attractive to passengers.
- The current study aims to assess the traffic and environmental impacts of **automated shuttle bus services under different operational speeds** for various market penetration rates of CAVs.

Simulation Scenarios

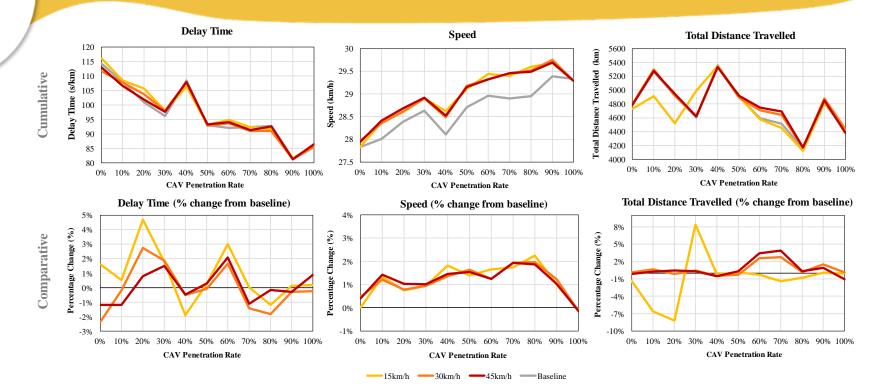
Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

- Three sets of simulation scenarios were investigated:
 - i. Different CAV market penetration rates (MPRs) 0%-100% in 10% increments
 - ii. With or without (baseline scenario) the automated shuttle bus service operation
 - iii. Distinct operational speeds (15, 30 and 45 km/h) for the automated shuttle bus service

Methodology

Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

Villaverde district (Madrid, Spain)


- In order to investigate an automated shuttle bus service and further examine its operational speed, the microscopic simulation method was selected using the Aimsun Next software.
- The **automated shuttle bus service** was introduced in the Villaverde district network in Madrid, Spain, operating in parallel with the existing public transport.
- The service included one 12 m autonomous electric shuttle bus with 15 min frequency. The service circular route had a total length of 1.6 km and two bus stops.

Network Level Traffic Impacts

Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

- By increasing CAV MPR, the traffic conditions are improved and specifically, speed is increased, while delay time and distance travelled are decreased.
- Higher operational speed services (30 and 45 km/h) lead to lower delay time, higher driven kilometers for CAV MPRs above 30%, while no differences are noticed in speed values.

LISBON 2022

Network Level Environmental Impacts

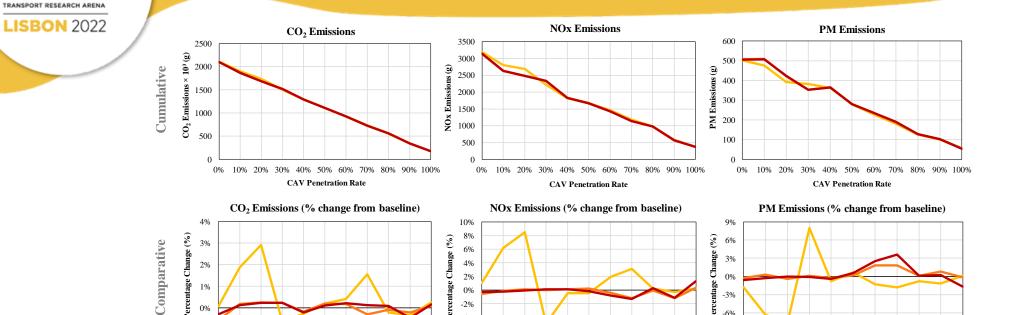
Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

-3%

-6%

0%

10% 20% 30%


40% 50%

CAV Penetration Rate

60%

Perce

90% 100%

Traffic emissions are decreased linearly and drastically when increasing CAV MPR.

10% 20% 30%

CAV Penetration Rate

age

90% 100%

0%

-2%

-4%

-6%

0%

30 and 45 km/h operational speed services lead to emissions similar to the baseline ones across all MPRs, while the 15 km/h speed service fluctuated drastically below 70% MPR.

TRANSPORT RESEARCH AREN

Traffic & environmental impact assessment under distinct operational speeds for automated shuttle bus services

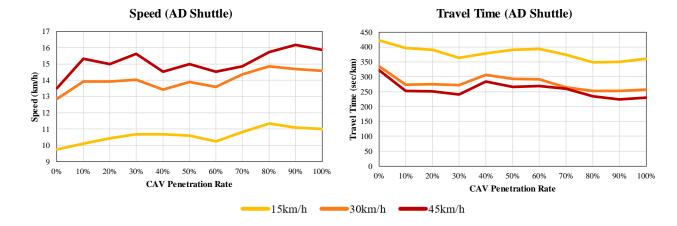
1%

-1%

0%

10% 20% 30%

40%


CAV Penetration Rate

Perc

Shuttle Service Level Impacts

Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

- By increasing CAV MPR, shuttle service mean speed is slightly increased, while travel time was decreased.
- 30 and 45 km/h speed services fluctuated similarly through the increasing CAV MPR.
- 45 km/h speed service records the highest speed and lowest travel time, while the 15 km/h operation records the lowest and highest respectively.

Conclusions

Oikonomou M., Sekadakis M., Katrakazas C., Hillebrand, J., Vlahogianni, E., Yannis, G.

- Both traffic and environmental conditions are improved when more CAVs exist within the network. Specifically, average speed is increased, while delay time, distance travelled and traffic emissions are decreased.
- No major differences between the different operational speed services were noticed on network level.
- A higher operational speed of an automated shuttle service operates more efficiently for lower CAV MPRs, while it seems that does not impact traffic and environmental conditions in higher MPRs.

Thank you!

Maria Oikonomou

National Technical University of Athens

Email: <u>moikonomou@mail.ntua.gr</u>

@TRA_Conference

Transport Research Arena (TRA)

Traconference

traconference2022

traconference.eu

HOSTED AND ORGANISED BY:

CO-ORGANISED BY

