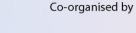
Exploring the benefits from 30 km/h speed limit to enhance urban sustainability

Eva Michelaraki

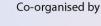
Civil Transportation Engineer

Together with: George Yannis, Professor

National Technical University of Athens Athens, Greece

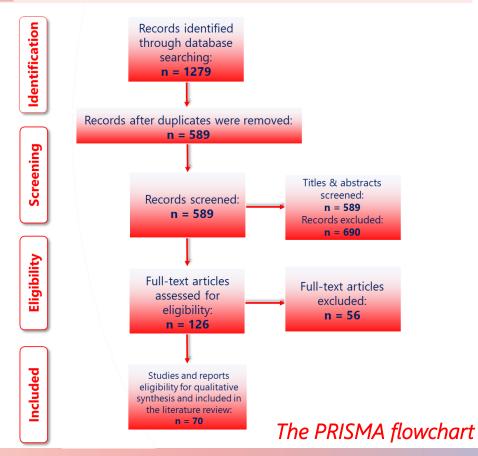

Outline

- 1. Key facts about speeding
- 2. Scientific evidence on 30km/h city-wide schemes
- 3. Conclusion
- 4. 30 Marathons in 30 months campaign


Objectives

- Critical assessment of the effectiveness of city-wide 30 km/h speed limit in order to enhance urban sustainability
- Identification of changes before and after the implementation of 30 km/h speed limits in cities in terms of:





Methodology


				R "20 mph" OR "30 km/h spe	
			OR "speed	limit" OR "speed limit reducti	ion" OR
	Moto analysis from 17 cities and 70 studies were	30 km/h	"maximum	n speed" OR "reduced speed	I" AND
•	Meta-analyses from 17 cities and 70 studies were	speed limit	"traffic calm	ning" AND "mobility" AND "cit	ty-wide"
	to almada al		AND "cities	s" AND "implementation mod	dalities"
	included		AND	"benefits" AND "urban areas	3"
_				Records identified	

- Systematic search of relevant scientific and grey literature was, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
- The inclusion criteria for selecting relevant studies were:
 - ✓ Search term included in title, abstract or key words
 - ✓ Studies published from 1992 and onwards
 - Studies including information with regards to 30 km/h speed limit in the title or abstract
 - Source: peer-reviewed journals before peer-reviewed conference papers before scientific papers/articles

Hosted by

Key search

phrase

Supported by

Search terms

Screened

papers

589

Included

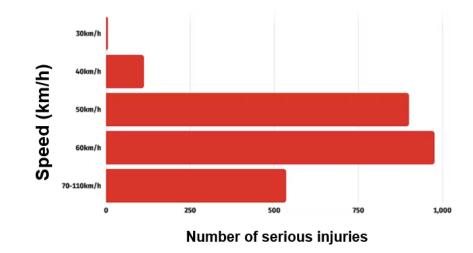
papers

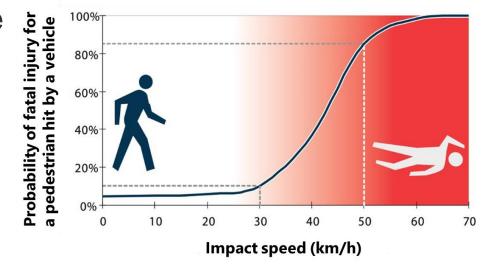
70

Speeding Kills (1/2)

- Road crashes is a major societal problem worldwide, with 1,19 million road fatalities per year and more than 50 million of road injuries
- Speeding is the **number one cause of road crashes** worldwide, especially in cities where pedestrians, cyclists and motorcyclists are highly exposed and vulnerable in case of a collision (70% of fatalities in urban areas are VRUs)
- Speed has been found to be a major contributory factor in around 10-15% of total crashes and in around 30% of fatal crashes
- Speed effects the quality of life of urban residents, especially the safe mobility of vulnerable road users

Co-organised by





Speeding Kills (2/2)

- When speed increases, the risk of a crash and of its severity increases as well
- A 5% increase in average speed leads to approximately a 10% increase in all **injury crashes** and a 20% increase in **fatal crashes**
- ➤ The increase in crash risk is usually attributed by the fact that when speed increases, the **time to react** to traffic situations is shorter and manoeuvrability of a speeding car is limited
- ➤ Pedestrian fatalities increase from 10% in 30km/h collisions to 90% in 50km/h collisions

Co-organised by

Hosted by

Supported by

Benefits from 30km/h Speed Limit (1/2)

according to international literature

Setting a speed limit of 30 km/h where people and traffic mix, make streets safer, healthier, greener and more liveable

Road crashes reduction

- Reductions in speed limits are intended to improve road safety by decreasing travelling speed and thus reducing the risk of crashes occurring and the severity of crashes that do occur
- The risk of death is almost five times higher in collisions between a car and a pedestrian at 50 km/h compared to the same type of collisions at 30 km/h

Air pollution reduction

- Streets that promote safe walking and cycling can reduce car dependency and harmful vehicle emissions that contribute to climate change
- City-wide 30 km/h speed limit reduce carbon dioxide and nitrous oxide emissions from diesel cars, and particulate matter emission from both diesel and petrol cars, thus reducing air pollution

Benefits from 30km/h Speed Limit (2/2)

according to international literature

Fuel consumption reduction

- Lower speeds lead to lower fuel consumption
- Smoother traffic flow leads to additional fuel economy (eco-driving)

Traffic flow improvement

- Motor traffic volumes decrease, since slower speeds encourage active, sustainable and shared travel
- Reducing the speed limit at 30km/h improves traffic flow, reduces congestion and improves travel times as there is less stop/start traffic movement

Sustainable improvement

- Calm driving in lower speeds is a mean of healthier living for all road users; and especially children and the elderly walk more freely
- Significant increase (in the mid-term) of pedestrian, cyclists and e-scooter active mobility and Public Transport passengers

Cities with 30 km/h Speed Limit

A/A	City	Implementation Started
40	Amsterdam	December 2023
39	Wales	September 2023
38	Bologna	July 2023
37	Florence	November 2022
36	Copenhagen	June 2022
35	Lyon	March 2022
34	Den Haag	December 2021
33	Zurich	December 2021
32	Toulouse	November 2021
31	Vienna	September 2021
30	Paris	August 2021
29	Montpellier	August 2021
28	Münster	July 2021
27	Valencia	May 2021
26	Leuven	April 2021
25	Brussels	January 2021
24	Nantes	August 2020
23	Glasgow	January 2020
22	Antwerp	January 2020
21	Barcelona	December 2019

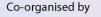
A/A	City	Implementation Started			
20	Lille	August 2019			
19	Helsinki	May 2019			
18	Madrid	September 2018			
17	Bilbao	June 2018			
16	Strasbourg	February 2017			
15	Dublin	January 2017			
14	Berlin	January 2017			
13	Edinburgh	July 2016			
12	London	June 2016			
11	Grenoble	January 2016			
10	Ljubljana	September 2015			
9	Luxembourg	August 2015			
8	Ghent	April 2015			
7	Bristol	2015			
6	Munich	2011			
5	Brighton	2010			
4	Hove	2010			
3	Warrington	July 2005			
2	Stockholm	2004			
1	Graz	September 1992			

Organised by

Co-organised by

30km/h Speed Limit in Cities (1/2)

<u>Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe Sustainability, 16(11), 4382</u>


City-wide 30km/h speed limits led to average reduction in: (meta-analyses from 17 cities and 70 studies)

- Fatalities by 37%
- Serious injuries by 38%
- Road crashes by 23%
- Emissions by 18%
- Noise by 2.5 db
- Fuel consumption by 7%
- Traffic congestion by 2%

30km/h Speed Limit in Cities (2/2)

<u>Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h</u> <u>Speed Limit Benefits in Europe Sustainability, 16(11), 4382</u>

Fatalities:

> 63% and 55% reduction in Bristol and Brussels

Serious injuries:

> 72% and 50% reduction in Münster and Grenoble

Road crashes:

> 46% and 40% reduction in London and Paris

Emissions:

> 29% and 25% reduction in Berlin and Graz

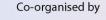
Noise:

> 3 db reduction in Paris and Berlin

Energy:

> 12% and 10% reduction in Münster and Brussels

Traffic congestion:


> 9% and 2% reduction in Grenoble and Bilbao

C:t-	Safety		Emissions		Energy	Traffic	
City	Crashes	Fatalities	Injuries	CO ₂ , NO _x , PM	Noise	Fuel	Congestion
Bologna	-38%	-33%	-10%	-23%			-3%
Zurich	-16%	-25%	-20%		-1.7 dB		
Paris	-40%		-25%		-3 dB		
Münster			-72%	\downarrow	\downarrow	-12%	
Brussels	-10%	-55%	-37%		-2.5 dB	-10%	
Glasgow		-31%					
Helsinki	-9%		-42%				
Bilbao	-28%			-19%			-2%
Berlin	-10%			-29%	-3 dB		
London	-46%	-25%	-25%	-10%			
Grenoble	\downarrow	\downarrow	-50%				-9%
Edinburgh	-38%	-23%	-33%	-8%			-2.4%
Bristol		-63%					
Brighton			-45%				
Hove			-45%				
Warrington			-43%				
Graz	-12%		-20%	-25%	-2.5 dB		

^{*} grey colour indicates that the impact of the implementation of 30 km/h in this city has not been examined yet

^{**} the symbol ↓ indicates that the quantitative effect of this measure has not been provided; only qualitative impact is given

^{***} these reductions refer to a comparison period before and after the implementation of 30 km/h speed limits which is not the same among all cities examined

Conclusion

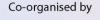
More livable cities

Speed limits reduction gaining rapid acceptance across Europe and more and more European cities adopting lower speed limits

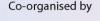
Significant socio-economic impact

The reduction of speed limits in cities (30km/h) leads to a **significant** reduction in:

- fuel/energy consumption and air pollution
- road crashes and congestion
 without a significant decrease in travel times


Increase of acceptance

- Public acceptance of speed limits reduction tends to improve over time, especially by pedestrians, cyclists and Public Transport passengers
- > Inertia and reactions from car drivers need to be addressed


The road safety catalyser

The implementation of city-wide 30km/h speed limit is the since-long waited, single road safety measure with such a significant improvement at such a low cost

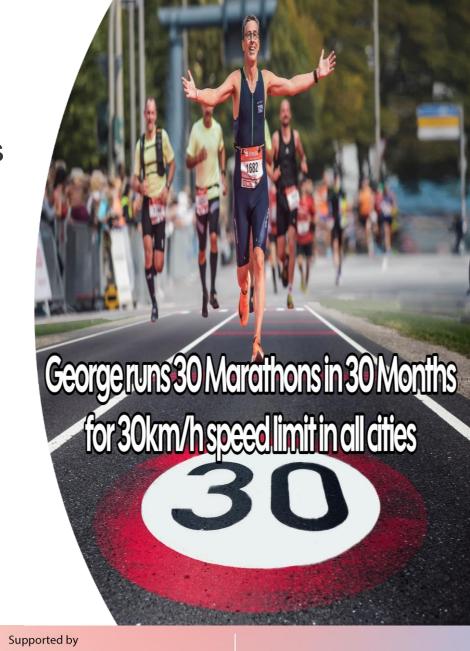
Such a high societal impact for such a small change in our habits

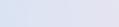
Supported by

Accompanying Measures

- Public consultation and awareness campaigns
- Public transport and active mobility promotion
- Traffic calming measures
- Intelligent transportation systems
- Monitoring and evaluation
- Enforcement and police cooperation

Co-organised by




Campaigns to Reduce Speed Limits

- ➤ Despite the blatant scientific evidence, the discussion and introduction of city-wide 30 km/h speed limit faces strong reactions and rigid inertia, whereas supporters' voices are often weak and inefficient resulting in hesitant politicians and Authorities
- After more than 30 years of dedication to road safety science and several Marathon races, **Prof. George Yannis** decided to step beyond the traditional scientific pleas and combine both passions for a cause: to run **30 Marathons in 30 months** to actively promote the adoption of city-wide 30km/h speed limit in as many cities as possible worldwide

Co-organised by

Thank
you!