Enhancing Road Safety: Insights from Delivery Drivers' Perspectives in Attica Region Stella Roussou Research Associate, PhD candidate

Together with : George Yannis, Konstantinos Choumis

National Technical University of Athens, Greece

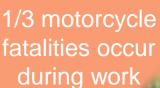
Road Safety for Delivery Drivers in Urban Areas

DUBAI ITS World Congress 16-20 September 2024 Mobility Driven by ITS

Urban Safety Challenges

- High Risk of traffic crashes, especially for motorcycle riders
- Navigating through congested streets and adverse conditions

Drivers' Role in Urban Transportation


- Growing importance with the rise of e-commerce and food delivery services
- Delivery drivers face significant road safety risks especially in densely populated areas like Attica region.
- Balancing delivery time pressures and road safety

Research Objective

- Analyze drivers' behavior and choices in risky situations
- Understand the factors influencing decisions, such as profit loss, crash risk, and penalties

Outcome

Provide actionable recommendations to improve safety for delivery drivers in urban areas

Research Methodology

Data Collection

- 200 Food Delivery Drivers surveyed in Attica, Greece
- Drivers responded to hypothetical scenarios with varying levels of delivery time, crash risk, and profit loss

Survey Structure

- Driver background (experience, crash history, fines received, etc.)
- Views on Road Safety and Delivery Speed
- Hypothetical Scenarios (careful driving, risky driving, no change)
- Demographics (age, driving experience, etc.)

Distribution Approach

- Online via social media for broader reach.
- Offline through face-to-face surveys in shops and offices for comprehensive data collection.

Organised by

ERTICO

Co-organised by

Hosted by

Statistical Analyses

Multinomial Logistic Regression

Generalized Linear Models (GLMs)

Purpose
To model
driver choices
between three

behaviors

Drive Carefully

Drive a bit more carefully

Make no changes

Purpose

To analyze relationships between driver characteristics (e.g., age, experience, fines) and driving behaviors.

<u>Key</u> Variables Delivery time, accident risk, driver's age, number of fines.

Helps explain drivers' decision-making in risky scenarios.

<u>Key</u>

Age, experience, fines, helmet use

Economic incentives/disincentives and their impact on safety-conscious behavior.

Equation

$$Y = \beta_0 + \beta_0 * X_1 + \beta_2 * X_2 + \dots + \beta_0 * X_0 + \varepsilon$$

<u>Key</u> Features Customizable Error Distribution: Allows for nonnormal error distributions (e.g., Poisson, binomial).

Flexibility: Can handle different types of response variables (binary, count, etc.).

Organised by

Co-organised by

Hosted by

Results from Multinomial Regression Analysis

• Understanding drivers' **preferences** for different driving behaviors under hypothetical scenarios.

Scenarios

- Drivers chose between three behaviors in response to variations in:
 - Delivery Time (Pressure to deliver quickly).
 - Crash Risk
 - Profit Loss (Economic impact)

Results

- High Preference for Cautious Driving
 - Drivers strongly favored cautious driving, reflecting concern for safety over other factors
- Safety vs. Profit
 - Drivers prioritized long-term safety benefits over short-term financial gain
- Age Impact
 - Older drivers demonstrated a higher propensity for cautious driving, attributed to greater driving experience and risk awareness
- Desensitization to Penalties
 - Drivers with a history of receiving more fines tend to engage in riskier driving behaviors
 - Fines alone may not effectively deter risky behaviors in this group, indicating the need for more targeted interventions.

Co-organised by

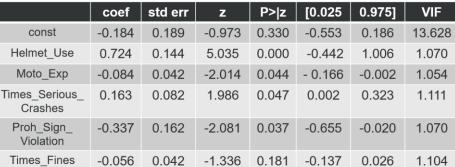
Table 1: Careful Driving vs No change

Choice =1	coef	std err	Z	P> z	[0.025	0.975]
const	-40.834	14.582	-2.800	0.005	-69.413	-12.255
Time_norm	23.775	335.512	0.071	0.094	-633.817	681.367
AccidRed_norm	57.262	118.214	0.484	0.063	-174.434	288.957
Profit_norm	28.835	284.166	0.101	0.092	-528.121	585.790
AGE	0.358	5.180	0.069	0.945	-9.795	10.512
TIMES_FINE	-0.165	2.162	-0.076	0.939	-4.402	4.073
STRICT_PENALTIES	0.444	6.676	0.067	0.947	-12.640	13.529

Table 2: Less careful driving vs No change

	Choice=2	coef	std err	Z	P> z	[0.025	0.975]
ed g	const	-7.298	10.580	-0.690	0.490	-28.0350	13.437
	Time_norm	13.097	335.511	0.039	0.097	- 644.492	670.686
	AccidRed_norm	12.946	117.041	0.111	0.091	- 216.450	242.344
	Profit_norm	24.879	284.165	0.088	0.093	- 532.074	581.833
	AGE	-0.441	5.176	-0.085	0.932	-10.585	9.703
	TIMES_FINE	-0.041	2.159	-0.019	0.985	-4.274	4.191
g	STRICT_PENALTIES	-0.006	6.671	-0.001	0.999	-13.080	13.068

Hosted by



Results from Generalized Linear Models (GLMs)

	coef	std err	z	P> z	[0.025	0.975]	VIF
const	0.657	0.155	4.243	0.000	0.354	0.961	8.787
Suit_Use	1.0403	0.120	8.659	0.000	0.805	1.276	1.028
Moto_Exp	-0.166	0.044	-3.795	0.000	-0.253	-0.081	1.109
Times_Fines	0.1042	0.043	2.435	0.015	0.020	0.188	1.100
Times_Crashes	-0.216	0.055	3.962	0.000	-0.323	-0.109	1.127
Red_Light_ Violation	-0.019	0.223	-0.089	0.929	0.4570	0.417	1.029

Table 5: Camera Use

Table 6: Camera 030									
	coef	std err	z	P> z	[0.025	0.975]	VIF		
const	1.118	0.272	4.117	0.000	0.586	1.651	19.142		
Moto_Exp	-0.090	0.055	-1.652	0.099	-0.197	0.017	1.165		
Helmet_Use	0.348	0.164	2.121	0.034	0.027	0.671	1.030		
Times_Fines	0.041	0.049	-0.844	0.398	-0.139	0.055	1.044		
Work_Time	0.178	0.093	1.920	0.055	-0.004	0.361	1.159		
Pass_BV_ Violation	-0.567	0.168	-3.377	0.001	-0.897	-0.238	1.043		

Key Factors Influencing Safer Driving Behaviors:

Helmet Use

Drivers using helmets are more likely to engage in cautious driving.

Experience

Drivers with motorcycle experience tend to exhibit safer behaviors.

Serious Crashes

Drivers involved in serious crashes are more inclined to adopt cautious practices.

Prohibited Sign Violations

• Drivers who violated prohibition signs showed **less tendency** to adopt safer behaviors.

Stricter Measures and Fines

Support for **stricter traffic measures** and **increased fines** correlates with safer driving decisions.

Economic Incentives vs. Safety

Economic pressures affect decision-making; drivers often weigh financial incentives against safety considerations.

Fines and Risky Behavior

Drivers with more fines are less likely to adjust their driving behavior, indicating desensitization to penalties.

Organised by

Co-organised by

Hosted by

Supported by

ITS World Congress

Mobility Driven by ITS

Discussion

Overview

- Both the Multinomial Regression and GLM models highlight key factors influencing delivery drivers' behavior.
- Safety concerns are paramount, influenced by age, personal experience, and frequency of fines.

Driver Safety vs. Profit

- Drivers prioritize safety over profit.
- Showing the importance of policies that reward safe driving and don't force drivers to choose between safety and earnings.

Policy Implications

- Positive response to stricter penalties shows potential for policy interventions to enhance road safety.
- Insights are valuable for stakeholders aiming to improve traffic safety and driver behavior in urban settings.

Age and Experience

 Older drivers tend to engage in safer driving practices, highlighting the importance of targeted safety training for younger, less experienced drivers.

Co-organised by

Future Research Directions

Diversity of the Sample

The study focuses primarily on male drivers aged 25-50, limiting the generalizability. Future studies should include **more female drivers** and broader age ranges.

Biases in Self-Reported Data

Reliance on self-reported data may introduce biases, suggesting the need for more objective data collection methods.

Long-Term Studies

Future research should explore how driver behavior evolves over time, particularly in response to **changes in job conditions**, traffic regulations, and the economy.

Technological Impact

Further study is needed on the effects of **new technologies** (e.g., navigation aids, safety apps) and policy interventions (e.g., stricter laws) on driver safety.

Hosted by

Thank you!