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Abstract 

 

Cycling has emerged as a popular mode of transportation, promoting health and sustainability. 

However, cyclists face various risks, including crashes involving motor vehicles. Moreover, the 

growing prevalence of urban cycling as a response to traffic congestion and air pollution 

underscores the urgent need to address safety concerns and enhance infrastructure for cyclists 

sharing the road with motorized vehicles (Karanikola P, Cycling as a Smart and Green Mode of 

Transport in Small Touristic Cities., 2018). Understanding the factors contributing to cyclist injuries 

is crucial for enhancing road safety and promoting sustainable mobility. In this study, data from 

Bicycle Crashes in Great Britain from 1979 to 2018 are analysed to investigate the relationship 

between several factors and the severity of cyclist injuries. Specifically, the focus is on critical 

factors such as age group, day of the week, speed limits (categorized as under 30 km/h, between 

30-50 km/h, and above 50 km/h), number of vehicles involved, weather conditions, road type, light 

conditions, road conditions, gender, and number of casualties. The supervised machine learning 

algorithm CatBoost is used to predict cyclist injury severity based on these factors. The feature 

importance analysis revealed that age group is the most significant predictor, followed by the day 

of the week and speed limits. Other important factors include the number of vehicles involved, 

weather conditions, road type, and light conditions. Lower speed limits, particularly under 30 km/h, 

are associated with reduced cyclist injuries, while adverse weather and poor road conditions 

significantly increase the severity of injuries. These findings underscore the importance of 

comprehensive safety strategies that consider various factors influencing crash severity. The 

implications of the study extend beyond academic research, informing policymakers, urban 

planners, and transportation authorities about the critical role of speed limit regulations in 

promoting cyclist safety.  Advocacy for evidence-based measures, such as age-specific safety 

programs, improved infrastructure, and effective speed management strategies, is essential for 

enhancing cyclist protection. In conclusion, this analysis underscores the significance of integrating 

speed management measures into broader road safety strategies to create safer environments for 

cyclists and promote sustainable urban mobility. 
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1. Introduction 
 

Understanding and mitigating the severity of cyclist crash incidents is a complex task that 
involves extensive research and data analysis. Efforts to reduce crash severity focus on identifying 
and analyzing the factors that contribute to serious injuries and fatalities in road crashes are being 
explored. This includes the study of various elements such as road conditions, vehicle characteristics, 
and driver behavior. By leveraging advanced analytical techniques and machine learning models, 
researchers aim to predict and mitigate crash outcomes, thereby enhancing road safety and reducing 
the impact of traffic incidents on public health. 

The phenomenon of crash injuries, particularly among vulnerable road users like cyclists, has 
attracted significant attention in recent years. As cycling becomes an increasingly popular mode of 
transportation due to its health and environmental benefits, the need to address cyclist safety has 
become paramount. Cyclists are at a higher risk of severe injuries due to their lack of physical 
protection compared to motor vehicle occupants. Factors such as vehicle speed, road conditions, 
weather, and visibility play crucial roles in the severity of cyclist injuries. In addition, the interaction 
between cyclists and motor vehicles in urban settings introduces further complexity, necessitating 
comprehensive safety measures. 

The objective of this paper is to examine the determinants influencing the severity of cyclist 
injuries in road accidents within Great Britain. By utilizing data collected from 1979 to 2018, this study 
applies the CatBoost machine learning algorithm to evaluate the significance of various contributory 
factors. The identification of the most critical predictors of injury severity aims to provide valuable 
insights that can guide policy formulation and enhance safety measures for cyclists. This research 
contributes to the academic understanding of road safety and offers practical recommendations for 
policymakers, urban planners, and transportation authorities to strengthen cyclist protection and foster 
sustainable mobility. 

The paper is structured as follows: Section 2 reviews the existing literature on crash severity and 
cyclist safety. Section 3 describes the methodological background. Section 4 details the data 
collection, preprocessing steps and the data analysis process. Section 5 presents the application of 
CatBoost algorithms and the results of the analysis, highlighting the most significant factors influencing 
injury severity. Section 6 discusses the implications of the findings and provides recommendations for 
improving cyclist safety. Finally, Section 7 concludes the paper and suggests directions for future 
research. 

2. Literature Review 
 

Cyclist safety and injury severity have been critical areas of research in transportation and urban 
planning. Numerous studies have explored various factors influencing cyclist injuries and the 
effectiveness of interventions aimed at mitigating crash severity. This review synthesizes key findings 
from existing literature to provide a comprehensive understanding of the determinants of cyclist injury 
severity and the methodologies used to study this phenomenon.  

A study using a binary regression model to analyze factors affecting the severity of cycling 
crashes has identified that road conditions, weather, and lighting significantly influence the likelihood 
of severe injuries. Their findings emphasize the need for improved infrastructure and better visibility 
measures to enhance cyclist safety (Jaber et al. 2021) 



Focus on the vulnerability of cyclists on the road, particularly in relation to the type of vehicle 
involved and driver culpability is very important (García-Herrero et al., 2019). Their probabilistic 
analysis highlighted that heavy vehicles, such as trucks and buses, pose a higher risk of causing 
severe injuries to cyclists. The study also found that drivers are more likely to be held responsible for 
accidents involving cyclists, suggesting the need for stricter regulations and training for drivers of larger 
vehicles (García-Herrero et al., 2019). 

A case-control study examined cycling injury risks in London, identifying critical factors such as 
road design and traffic density (Mustafa Ekmekci, 2024). They found that intersections and areas with 
high traffic volumes are hotspots for cycling accidents, indicating the importance of targeted safety 
measures in these areas. This study also underscored the role of urban planning in mitigating cycling 
risks by incorporating cyclist-friendly infrastructure (Aldred R, 2018). 

The effectiveness of various safety measures for cyclists in a meta-analysis revealed that 
dedicated cycling lanes, traffic calming measures, and helmet use significantly reduce the severity of 
injuries in cycling accidents. The study advocates for comprehensive safety programs that integrate 
these measures to protect cyclists effectively (Ahmed Jaber, 2021).  

These studies collectively highlight the important nature of cycling safety, involving factors 
ranging from infrastructure and vehicle types to environmental conditions and driver behavior. The 
consistent theme across the literature is the critical need for integrated safety measures that address 
the diverse risks faced by cyclists. Enhanced infrastructure, stringent vehicle regulations, and 
comprehensive urban planning are essential components of effective cyclist safety strategies. 

3. Methodological background  
 

The variable of interest in the present analysis is the severity of cyclist injuries. To investigate 
the factors affecting injury severity among cyclists in Great Britain, detailed data from various sources 
spanning from 1979 to 2018 were analyzed using advanced machine learning techniques. Specifically, 
CatBoost algorithms were employed to determine the importance of numerous contributing factors in 
predicting injury severity. This robust ensemble method is particularly effective in handling categorical 
features and missing values, making it well-suited for the complexity of traffic incident data. 

3.1 CatBoost 
 

Gradient Boosted Decision Trees (GBDT’s) are a powerful tool for classification and regression 
tasks in Big Data (Hancock J. K., 2020). CatBoost is a member of the family of GBDT machine learning 
ensemble techniques. Since its debut in late 2018, researchers have successfully used CatBoost for 
machine learning studies involving Big Data. Furthermore, as a Decision Tree based algorithm, 
CatBoost is well-suited to machine learning tasks involving categorical, heterogeneous data. Another 
important issue of CatBoost is its sensitivity to hyper-parameters and the importance of hyper-
parameter tuning (Hancock J. K., 2020). 

 For the analysis, CatBoost algorithms were employed. CatBoost, short for categorical boosting, 
is a powerful supervised ML algorithm developed by Yandex, specifically designed to handle 
categorical features effectively (Hancock J. K., 2020). CatBoost is based on gradient boosting of 
decision trees and uses one-hot encoding to handle categorical data. Like XGBoost, CatBoost also 
encompasses multiple Classification and Regression Trees (CART). Its adaptability and effectiveness 
have made it a top performer in numerous ML competitions (Liudmila P, 2018).  



CatBoost is designed for increased speed, accuracy, and ease of use (Liudmila P, 2018). The 
core boosting technique in CatBoost is based on the superimposition of new tree models in the errors 
and residuals of previous models. The tree ensemble is then combined to reach the final prediction. 
The loss function of CatBoost includes two terms: (i) a training loss term and (ii) a regularization term 
to control model complexity and prevent over-fitting (Dorogush, 2018); Li et al., 2019). In essence, 
CatBoost applies a mapping function between variables, where a regression tree ensemble model 
uses a number of functions K additively to predict y, so that (Liudmila P, 2018):  

�̂� = 𝜑(𝑥𝑖) = ∑𝑓(𝑥𝑖)

𝐾

𝑘=1

 Eq. (1) 

Where �̂� is the predicted value of the original dependent (or response) variable y and 𝑥𝑖are the 
independent (or explanatory) n variables across i observations. The loss function expresses the 
distance between training data and predicted values and is defined as 𝑙(�̂�𝑖 , 𝑦𝑖). A common choice of l 

is the mean squared error for a set of parameters  𝜑𝑖 (JH, 2001): 
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A penalizing term, 𝛺(𝑓), is also introduced for model complexity control such that: 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑐‖2 Eq. (3) 

Where 𝛾, 𝜆 are penalizing coefficients, 𝑇 is the number of leaves in the regression tree. Each leaf 
represents a value of the target variable given the values of the input variables represented by the 
path from the root to the leaf, creating a flowchart, and 𝑐 is the weight assigned to each leaf. Having 

obtained the loss function, 𝑙(�̂�𝑖 , 𝑦𝑖), and the penalizing term, 𝛺(𝑓), the objective function can be 
formulated as: 

𝐿(𝜑𝑖) =∑𝑙(�̂�𝑖 , 𝑦𝑖)

𝐼
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 Eq. (4) 

As with most ML methodologies, CatBoost features a number of tunable model hyperparameters 
that can be optimized before or during cross-validation of results, such as (CatBoost, 2022):  

- Learning rate: Governs the magnitude of iterations for minimizing the cost function.  

- Depth: Governs the maximum depth of the tree.  

- L2_leaf_reg: L2 regularization term on weights.  

- Border count: Number of splits for numerical features.  

- Random strength: Controls the intensity of randomness when scoring splits.  

 



Following good ML practices, the hyperparameters of CatBoost algorithms should be tuned 
initially before their final executions, and their predictions should subsequently be evaluated with 
model evaluation metrics. The highly non-linear, tree ensemble structure of CatBoost makes it resilient 
against bias from multicollinearity effects (Hancock et al., 2021). For classification algorithms, model 
performance is evaluated by the predictive performance of each configuration in terms of correct 
classifications. In binary classification, this is mainly supported by the confusion matrix of the test 
subset. 

4. Data collection 
 

4.1 Dataset description  
 

The dataset used for this analysis encompasses detailed records of bicycle accidents in Great 
Britain over a period spanning from 1979 to 2018. This extensive dataset was sourced from Kaggle, 
specifically from the "Bicycle Accidents in Great Britain (1979 to 2018)" collection curated by John 
Harshith and accessible via Kaggle. 

The dataset includes a comprehensive range of variables that provide a detailed account of each 
bicycle crash. These variables cover different aspects of the crashes, including the specific date and 
time when the crash occurred (Crash Date and Time, the severity of the crash categorized into different 
levels such as fatal, serious, and slight injuries (Severity), descriptions of the weather conditions at the 
time of the crash, which include sunny, rainy, snowy, etc. (Weather Conditions), details about the state 
of the road, such as dry, wet, icy, etc. (Road Conditions), information about the lighting conditions, for 
instance, daylight, darkness with or without street lighting ( Light Conditions), the number and types 
of vehicles involved in the crash (Vehicle Involvement). The dataset also contains casualty information 
including the age group and gender of the cyclists, and the number of casualties. 

 

4.2 Dataset pre-processing 
 

The data pre-processing for this research involved several critical steps to ensure the integrity, 
reliability, and suitability of the dataset for subsequent analysis. 

The preprocessing commenced with the merging of two distinct datasets: one containing 
detailed records of bicycle crashes and another providing specific information about the bicyclists 
involved in these incidents. The datasets were merged based on a common identifier, "crash number," 
which uniquely identifies each crash event. This merging step was crucial for creating a 
comprehensive dataset that integrates both crash-specific and cyclist-specific data, providing a holistic 
view of each crash.  

Identifying and removing outliers is essential to prevent skewed analysis and model 
performance. Outliers for the variables "number of vehicles," "number of casualties," and "speed limit" 
were identified. The outliers were defined based on the threshold indicated by the red lines in the 
provided box plots in the following graph 1. These data points were subsequently removed from the 
dataset to ensure a more accurate and representative analysis. 

 



Figure 1: Outliers Boxplots 

 

To maintain the dataset's integrity, records with missing values were dropped. This step also 
included the removal of records with unknown variables. By excluding these incomplete entries, the 
dataset's quality was enhanced, ensuring that the analysis was conducted on complete and reliable 
data. This process reduced the dataset from 827,861 entries to 754,636 entries. 

The speed limits were grouped into three categories to simplify the analysis and improve the 
model's performance. The speed limits were categorized Low Speed (Speeds less than 30 mph), 
Medium Speed (Speeds between 30 mph and 50 mph) and High Speed (Speeds greater than 50 
mph).   

Categorical variables were encoded to prepare the data for machine learning algorithms. 
Additionally, the severity labels were adjusted to simplify the classification task. The original severity 
categories were recoded such that serious and fatal crashes (FSI) were coded as 1, and light injury 
crashed were coded as 0.  

Given the observed class imbalance in the severity of injuries, as depicted in Figure 2, SMOTE 
(Synthetic Minority Over-sampling Technique) was applied. SMOTE generates synthetic examples for 
the minority class, thus balancing the class distribution and ensuring that the machine learning model 
is trained on a balanced dataset. This step is critical for improving the model's ability to accurately 
predict severe injuries, as it prevents the model from being biased towards the majority class. 



 

Figure 2: Class Distribution of Severity 

 
To address this, while training the CatBoost model, the class weights were adjusted to give more 

importance to the minority class. Specifically, class weights were set as follows: class_weights: [{0: 1, 
1: 1.15}]. This adjustment helps balance the influence of each class during model training without 
modifying the original data distribution. 

After cleaning, the dataset was partitioned into training and test sets, with a 80-20 split, to ensure 
robust model training and validation. This split was performed while preserving the original distribution 
of variables using the train_test_split function from the scikit-learn library in Python. This approach 
ensures that the training and test sets maintain the original distribution of the target variable. Studies 
such as those by Kohavi (1995) and Sivanandam et al. (2006) have highlighted the importance of an 
adequate split to prevent overfitting and underfitting, ensuring that the model performs well on unseen 
data. Kohavi's work on cross-validation techniques emphasizes the need for robust validation 
methods, with the 80-20 split being a simple yet effective strategy in many practical scenarios. 

4.3  Dataset Statistics 
 

The following graph presents two plots, where the top plot shows the total number of casualties 
per year, and the bottom plot depicts the yearly percentage change in the number of casualties.  

The top plot, representing the total number of casualties per year, shows a significant initial rise, 
peaking around the early years of the observed period. This peak indicates a period of high casualties, 
potentially due to various factors such as increased traffic, insufficient safety measures, or other 
external influences. Following this peak, there is a noticeable decline in the number of casualties, 
suggesting improvements in safety measures, traffic management, or policy changes that effectively 
reduced casualties. However, the decline is not entirely smooth; there are fluctuations indicating 



periods of both increases and decreases in casualties. In recent years, there is a slight upward trend, 
suggesting that while overall safety might have improved compared to the peak years, certain factors 
are causing an increase in casualties again. 

The bottom plot, illustrating the yearly percentage change in casualties, shows significant 
volatility in the early years. This high level of fluctuation suggests that the factors affecting casualties 
were highly variable, potentially due to rapid changes in traffic patterns, policy implementations, or 
other situational factors. After the initial volatility, the percentage changes become less extreme, 
indicating a period of stabilization where year-to-year changes were more consistent and less 
dramatic. However, there are still notable fluctuations in recent years, which could be due to new 
influences affecting traffic safety, such as changes in road conditions, enforcement of traffic laws, or 
other relevant factors. 

Figure 3: Number and Percentage Change of Casualties Per Year 

 



Overall, the initial rise and peak in casualties highlight a period of increased risk, followed by a 
general decline that points to successful interventions in improving road safety. The recent fluctuations 
and slight upward trend in both total casualties and percentage changes suggest that while past 
measures have been effective, ongoing efforts are required to address new and emerging factors 
contributing to casualties. Targeted interventions, continued monitoring, and adapting to changing 
conditions will be crucial in sustaining and further improving road safety. 

The figure 4 presents the annual number of casualties segmented by three different speed limit 
categories (labeled 0, 1, and 2). In speed limit category 1 (blue line), the number of casualties shows 
a sharp increase in the early years, reaching a peak around the middle of the observed period. 
Following this peak, there is a noticeable decline in the number of casualties, indicating possible 
improvements in safety measures or changes in traffic policies. Although the overall trend is a decline, 
there are fluctuations in recent years, suggesting varying factors influencing the number of casualties. 

For speed limit category 2 (green line), the trend is more moderate and consistent compared to 
category 1. The data shows a relatively stable trend with a slight decline over the years, indicating 
steady improvements or consistent enforcement of safety regulations in this speed limit category. 
There are fewer fluctuations in this category, suggesting that the factors affecting casualties might be 
more controlled or predictable. In speed limit category 0 (red line), the number of casualties starts very 
low, significantly lower than the other two categories. However, in recent years, there is a notable 
increase in the number of casualties in this category. This increase could be due to various reasons 
such as changes in traffic patterns, increased reporting, or other external factors. Despite the recent 
increase, the total number of casualties in this category remains much lower compared to categories 
1 and 2. 

 

Figure 4: Number of Casualties Per Year based on Speed Limit Categories 

 



 

Overall, speed limit category 1 consistently has the highest number of casualties, indicating that 
areas with this speed limit might require targeted interventions to reduce casualties. The lower number 
of casualties in speed limit category 2 suggests better safety or more effective control measures in 
these areas. The increasing trend in category 0 is a cause for concern and warrants further 
investigation to identify and address the underlying causes. 

5. Results  
 

The UK Cyclist Crash dataset was analyzed using CatBoost algorithms, with the results 
presented in this section. The analyses were conducted using Python, with the main framework 
following the guidelines provided by the CatBoost development team (2018) and Prokhorenkova et al. 
(2018). The dataset was split into training and test subsets with an 80-20 ratio, maintaining similar 
class distributions for the dependent variable. Given the observed class imbalance in the dataset, 
SMOTE (Synthetic Minority Over-sampling Technique) was applied to ensure that the model had an 
equal number of samples from each class during training and the class weights were adjusted to 
improve predictive performance. Specifically, class weights were set as follows: {0: 1, 1: 1.15}. 

5.1 CatBoost Results 

 

Hyperparameter tuning with 5-fold cross-validation was carried out to mitigate overfitting and 
enhance the model's performance. The objective was to determine the internal model configuration 
that provided the highest classification accuracy. A total of 7 different hyperparameter combinations 
were tested, randomly chosen from the ranges listed in Table 4. The entire process of selecting, 
running, and comparing these combinations was automated using Python code. 
RandomizedSearchCV was used to perform hyperparameter tuning with cross-validation. The search 
was conducted over a specified parameter distribution, including learning rate, iterations, depth, 
l2_leaf_reg, border_count, and class weights. The following best parameters were identified through 
the search. The final optimized hyperparameters are presented in the rightmost column of Table 4. 

Table 4: Hyperparameter Tuning Results for CatBoost Model 

 

Hyperparameter Examined range Optimized Value 

Learning rate 0.01 - 0.29 0.29 

Iterations 150 - 450 450 

Depth 3 - 11 11 

L2 Leaf Reg 1 - 10 10 

Border Count  32 - 128 32 

Class Weights  {0: 0.5, 1: 50} {0: 1, 1: 1.15} 

Random State  Fixed at 42 42 

 

The manual fine-tuning and optimization were conducted to ensure the best possible 
performance of the CatBoost model in predicting the severity of road crashes. Once the optimal model 
was determined, feature importance metrics were extracted for the contributing variables and are 
shown on Table 5. 

The feature importance analysis provides insights into which variables have the most significant 
impact on predicting the severity of road crashes. The gain metric, used here, measures the 



contribution of each feature in improving the model's performance. A higher gain value indicates a 
more substantial impact on the model's predictions. 

 

Table 5: CatBoost optimized model feature importance 

 

No. Feature Gain 

1 Age_Grp    16.826 

2 Day 13.993 

3 Speed_limit 12.386 

4 Number_of_Vehicles 9.866 

5 Weather_conditions 9.623 

6 Road_type 9.593 

7 Light_conditions 9.052 

8 Road_conditions     7.838 

9 Gender 6.026 

10 Number_of_Casualties 4.792 

 

The bar plot below represents the feature importance scores from the CatBoost model trained 
to predict the severity of cyclist injuries. Feature importance measures how much each feature 
contributes to the model's predictive power. Higher scores indicate that the feature has a more 
significant impact on the model's performance. 

Figure 5: CatBoost Feature Importance Plot 

 



The graph presents the importance of various features in predicting the severity of cyclist injuries 
using the CatBoost model. The most significant factor is the age group as different age groups have 
varying levels of vulnerability, with younger and older cyclists being potentially more at risk of severe 
injuries. The number of casualties is also highly significant, suggesting that incidents involving more 
casualties tend to be more severe. The speed limit at the crash location is a critical factor, which 
directly impacts the severity of injuries due to the increased impact force associated with higher 
speeds. The day of the week is also important, reflecting differences in traffic patterns and cycling 
activities between weekdays and weekends, which can influence injury severity. 

Other significant features include weather conditions, which affect the likelihood and severity of 
injuries, with adverse conditions like rain or snow increasing the risk. Light conditions also play a 
crucial role, as poor visibility during nighttime can lead to more severe injuries. The type of road where 
the crash occurs, such as highways, urban, or rural roads, impacts the severity of injuries due to 
differing risk levels. Road conditions, such as whether the road is wet, dry, or icy, further affect the 
severity of crashes. The number of vehicles involved in an incident is another key factor, with multi-
vehicle crashes often resulting in more severe injuries due to the complex dynamics and multiple 
impacts. Lastly, the gender of the cyclist, while lower in importance, still contributes to the model, 
indicating potential differences in risk exposure or injury outcomes based on gender. 

5.2 Model Performance Evaluation 

 

The model's performance on the test set is evaluated using precision, recall, and F1-score 
metrics for each class, along with overall accuracy. These metrics provide a comprehensive 
understanding of how well the model distinguishes between the two classes of severity in cyclist 
injuries. 

For class 0 (representing fatal and serious injuries), the model achieves a precision of 0.59, 
indicating that 59% of the instances predicted as class 0 are correctly identified. The recall for class 0 
is 0.60, meaning the model correctly identifies 60% of all actual class 0 instances. The F1-score, which 
balances precision and recall, is 0.59 for class 0, demonstrating a moderate level of accuracy in 
predicting severe cyclist injuries. 

For class 1 (representing non-injury and light injuries), the precision is 0.59, indicating that 59% 
of the instances predicted as class 1 are correctly identified. The recall for class 1 is 0.59, meaning 
the model correctly identifies 59% of all actual class 1 instances. The F1-score for class 1 is 0.59, 
reflecting balanced performance in predicting less severe injuries. 

The overall accuracy of the model is 0.59, as showcased in Table 6, suggesting that the model 
correctly predicts the severity of cyclist injuries 59% of the time. The macro average for precision, 
recall, and F1-score is 0.59, providing an unweighted average of the model's performance across both 
classes. The weighted average indicates that the model maintains a precision of 0.59, recall of 0.59, 
and F1-score of 0.59 across the dataset. 

 

Table 6: Model Performance Metrics 

 

Metric Class 0 (FSI) Class 1 (Non-injury/Light) 

Precision 0.59 0.59 

Recall 0.60 0.59 



F1-score 0.59 0.59 

Accuracy   

Macro avg 0.59 0.59 

Weighted avg 0.59 0.59 

 

The confusion matrix, as presented in Table 7, provides a comprehensive overview of the 
model's performance in predicting the severity of cyclist injuries. The model accurately identifies 
74,095 instances where the model correctly predicted class 0 (true positives) and 72,865 instances 
where the model correctly predicted class 1 (true negatives). However, the model also incorrectly 
predicted class 1 instead of class 0 in 50,291 instances (false positives) and class 0 instead of class 
1 in 51,374 instances (false negatives). 

Table 7: Confusion Matrix 

 

 Predicted Class 0 Predicted Class 1 

Actual Class 0 74095 50291  

Actual Class 1 51374 72865 

 

6. Discussion  
 

The findings from this study underscore several critical factors that significantly influence the 
severity of cyclist injuries in road accidents. These insights are pivotal for shaping policies and urban 
planning efforts aimed at enhancing cyclist safety and promoting sustainable urban mobility. 

The analysis highlights the crucial role of speed limits in determining injury severity. Lower speed 
limits, especially those under 30 mph, are associated with a significant reduction in severe injuries 
among cyclists. This aligns with the established literature, which consistently advocates for stringent 
speed management as a fundamental aspect of road safety (Elvik and Mysen, 1999). Policymakers 
should prioritize the implementation and strict enforcement of lower speed limits in urban areas, 
particularly in zones with high cyclist activity. Such measures not only reduce the impact force in 
collisions but also enhance overall traffic safety. 

The age group of cyclists emerged as another vital factor, indicating that younger and older 
cyclists are particularly vulnerable to severe injuries. This finding suggests the necessity for age-
specific safety interventions. For instance, targeted educational programs and campaigns can be 
designed to raise awareness about safe cycling practices and the importance of protective gear. 
Implementing such programs could effectively mitigate the heightened risks faced by these vulnerable 
age groups. Similar recommendations have been supported by studies emphasizing the varying 
physical and perceptual capabilities across different age demographics (García-Herrero et al., 2019). 

Environmental conditions, including weather and lighting, also play a significant role in 
influencing injury severity. Adverse weather conditions, such as rain or snow, and poor visibility during 
nighttime substantially increase the risk of severe injuries. Therefore, improving cycling infrastructure 
to withstand various weather conditions is imperative. Enhancing street lighting to ensure better 
visibility can further safeguard cyclists. These infrastructural improvements are critical in mitigating the 
risks associated with environmental factors, as supported by prior research on the impact of weather 
and lighting on cyclist safety (Cossalter et al., 2018). 

In addition to environmental and demographic factors, road type and conditions were found to 
significantly impact injury severity. Highways and poorly maintained roads pose higher risks to cyclists, 



often resulting in severe injuries due to higher vehicle speeds and complex dynamics in multi-vehicle 
crashes (Fraboni et al., 2019). Thus, investing in the maintenance and improvement of road quality, 
as well as implementing dedicated cycling lanes on both highways and urban roads, are essential 
measures. These interventions can substantially reduce the likelihood of severe injuries among 
cyclists. 

To ensure the effectiveness of these recommendations, continuous monitoring and policy 
adjustments are crucial. Policymakers should regularly review cyclist safety data and the outcomes of 
implemented measures to refine strategies and address emerging challenges. By adopting an 
evidence-based approach, transportation authorities can create safer environments for cyclists, 
encouraging more sustainable and healthy modes of transportation. This study provides a robust 
foundation for such interventions, offering practical insights that can inform the development of 
comprehensive road safety strategies. 

 

7. Conclusion 
 

This study has provided valuable insights into the factors influencing the severity of cyclist 
injuries in road accidents in Great Britain. Leveraging the CatBoost machine learning algorithm 
identified key predictors of injury severity, including speed limits, age group, day of the week, weather 
conditions, light conditions, road type, and road conditions. These findings have significant 
implications for policy-making and urban planning, emphasizing the need for targeted interventions to 
enhance cyclist safety. 

The critical role of speed limits in reducing injury severity underscores the importance of 
implementing and enforcing lower speed limits in urban areas. Policymakers should advocate for 
speed management strategies that prioritize the safety of vulnerable road users such as cyclists. 
Additionally, identifying age-specific vulnerabilities highlights the necessity for targeted educational 
programs and safety campaigns tailored to younger and older cyclists. These interventions can 
effectively mitigate the heightened risks faced by these age groups and contribute to overall road 
safety. 

Improving cycling infrastructure is another crucial recommendation arising from this study. 
Enhancing road quality, ensuring better street lighting, and maintaining weather-resistant 
infrastructure are essential measures to protect cyclists from environmental hazards. Urban planners 
and transportation authorities must prioritize these improvements to create safer cycling environments. 
The significance of these infrastructural changes is supported by existing literature, which emphasizes 
the need for comprehensive safety strategies that address various risk factors. 

Despite the valuable findings of this study, there are limitations that warrant further research. 
The data used spans several decades, during which time there have been numerous changes in road 
safety policies, infrastructure, and vehicle technology. Future research could benefit from more recent 
data to capture the current trends and effectiveness of contemporary safety measures. Additionally, 
exploring the impact of emerging technologies, such as advanced driver assistance systems (ADAS) 
and smart city initiatives, on cyclist safety could provide new insights. 

Future research should also consider the behavioral aspects of both cyclists and drivers. 
Understanding the interactions between different road users and how behavioral factors influence 
crash outcomes can lead to more effective safety interventions. Moreover, investigating the 



socioeconomic factors that may affect cyclist safety, such as access to protective gear and cycling 
education, can provide a more holistic understanding of the determinants of injury severity. 

In conclusion, this study has highlighted the multifaceted nature of cyclist injury severity and 
provided actionable recommendations for enhancing cyclist safety. By implementing targeted 
interventions based on the identified predictors, policymakers, urban planners, and transportation 
authorities can create safer environments for cyclists. Continued research in this area is essential to 
address emerging challenges and to ensure that safety measures evolve in response to changing 
conditions and technologies. Through sustained efforts and evidence-based policies, safer, more 
sustainable urban mobility for all road users can be promoted. 

 

Bibliography 
1. Ahmed Jaber, J. J. (2021). An Analysis of Factors Affecting the Severity of Cycling Crashes 

Using Binary Regression Model. Sustainability , pp. 6945, https://doi.org/10.3390/su13126945. 

2. Aldred R, G. A. (2018, Aug). Cycling injury risk in London: A case-control study exploring the 

impact of cycle volumes, motor vehicle volumes, and road characteristics including speed limits. 

. Accid Anal Prev. , p. 10.1016/j.aap.2018.03.003. 

3. Bentéjac, C. C.-M. (2021). A comparative analysis of gradient boosting algorithms. Artif Intell 

Rev, pp. https://doi.org/10.1007/s10462-020-09896-5. 

4. CatBoost. (2022). Retrieved from CatBoost: https://catboost.ai/en/docs/concepts/parameter-

tuning 

5. Dorogush, A. V. (2018). CatBoost: gradient boosting with categorical features support. p. arXiv 

preprint arXiv:1810.11363. 

6. García-Herrero, S., Aldred, R., Anaya-Boig, E., & Mariscal, M. A. (2019 ). Vulnerability of cyclists 

on the road. A probabilistic analysis of the database of traffic injuries in Spain focusing on type 

of involved vehicle and driver culpability. Proceedings of the 29th European Safety and 

Reliability Conference. Research Publishing, Singapore. 

7. Hancock, J. T. (2020). CatBoost for big data: an interdisciplinary review. . Journal of Big Data, 

pp. 7(94). https://doi.org/10.1186/s40537-020-00369-8. 

8. Jaber, A., Juhász, J., & Csonka, B. (2021). An Analysis of Factors Affectingthe Severity of 

Cycling Crashes UsingBinary Regression Model. Sustainability , pp. 13,6945 

https://doi.org/10.3390/su13126945. 

9. JH, F. (2001). Greedy function approximation: a gradient boosting machine. pp. 1189–232. 

10. https://www.kaggle.com/datasets/johnharshith/bicycle-accidents-in-great-britain-1979-to-2018 

11. Karanikola P, P. T. (2018). Cycling as a Smart and Green Mode of Transport in Small Touristic 

Cities. Sustainability, p. 10(1):268. https://doi.org/10.3390/su10010268. 

12. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model 

selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, 1137-

1143. 



13. Liudmila P, G. G. (2018). Catboost: unbiased boosting with categorical features. Advances in 

Neural Information Processing Systems 31, pp. 6638–6648. 

14. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. 

Advances in neural information processing systems,, p. 30. 

15. Molnar, C. (2018). A guide for making black box models explainable. Retrieved from 

https://christophm. github. io/interpretable-ml-book. 

16. Mustafa Ekmekci, N. D. (2024, May ). Assessing the Impact of Low-Speed Limit Zones' Policy 

Implications on Cyclist Safety: Evidence from the UK. Transport Policy, p. 

http://dx.doi.org/10.1016/j.tranpol.2024.04.014. 

17. Sivanandam, S. N. (2006). Introduction to Neural Networks Using Matlab 6.0. McGraw-Hill 

Education. 

 

 


