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Abstract 
Crash occurrence analysis is a traditional method for assessing traffic safety, yet more 
accurate or evident crash records may be necessary. However, unsafe traffic events 
such as harsh acceleration/braking instances occur more frequently and can be readily 
obtained. This study investigates the relationship between crash frequency and the 
occurrence of unsafe traffic events - harsh acceleration and braking events - utilizing 
smartphone app data across a network. The research aims to assess whether crashes 
can be predicted based on this data. Acceleration/braking events will be extracted from 
smartphone app data, enabling an analysis of their spatiotemporal distribution. This 
research explores whether the type of traffic events and their spatiotemporal resolution 
can enhance the prediction of crashes at specific sites such as intersections. Various 
regression models are developed and evaluated to determine the most accurate and 
reliable crash prediction models based on the combination of unsafe traffic events and 
spatiotemporal resolution. The anticipated findings will advocate for proactive 
approaches to traffic safety analysis and delineate the minimum requirements of 
unsafe traffic event data for such analysis. 
Keywords: traffic road safety analysis, unsafe traffic events, crash prediction, big data 
application, generalized linear models,  

1. Introduction 

1.1 Background and Motivation 

Traffic safety is an important concern for urban planners, transportation 
engineers, and public safety officials. Traditional methods relying on crash data have 
limitations due to the sporadic nature and underreporting of crashes. There is growing 
interest in using more frequent indicators like harsh acceleration/braking events, which 
occur more often and can be tracked via smartphone technology. This study leverages 
high-resolution data from smartphone sensors, combined with traffic metrics and road 
characteristics, to investigate driver behavior at intersections in Athens, specifically 
Mesogeion and Vouliagmenis avenues. 

Using GIS for spatial mapping and developing Generalized Linear Models 
(GLM), the research reveals that increased traffic load per lane correlates with more 
abrupt events, while higher average occupancy at intersections leads to frequent 
sudden accelerations and higher traffic speeds result in sudden decelerations. This 
highlights the significance of traffic metrics over road characteristics in influencing 
abrupt driving events. The integration of smartphone sensor data with GIS allows for 
detailed spatial analysis, identifying areas needing intervention to improve traffic 
management and safety. The study's findings suggest that unsafe traffic events can 
predict crash occurrences. By analyzing the spatiotemporal distribution of these events 
and developing regression models, the research aims to improve crash prediction 
accuracy at specific sites, such as intersections.  

1.2 Road Safety State 

Despite ongoing efforts to reduce road crashes and fatalities, global statistics 
have plateaued. In 2018, road crashes caused 1.35 million deaths annually, or about 
3,700 fatalities per day worldwide (WHO, 2018). In the European Union, there were 
approximately 20,653 road fatalities in 2022, a 4% increase from 2021, yet a 10% 
decrease from 2019 (European Commission, 2023). 

Fatality rates vary significantly across Europe. Sweden and Denmark report the 
lowest rates, with 22 and 26 deaths per million inhabitants respectively, while Romania 
and Bulgaria have the highest rates, with 86 and 78 deaths per million inhabitants 
respectively (Eurostat, 2023). Greece achieved a 51% reduction in crash fatalities 
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between 2009 and 2018 but still ranks 22nd among EU states, with 58 deaths per 
million inhabitants in 2022, slightly up from previous years (European Commission, 
2019; Eurostat, 2023). Economic recession has been partially credited for the 
reduction in fatalities (Yannis et al., 2014). However, the Hellenic Statistical Authority 
(ELSTAT, 2020) reported an 18.8% increase in road crashes causing death or injury 
in January 2018 compared to January 2017 (European Commission, 2023). 

Overall, while progress has been made in some areas, the overall reduction in 
road fatalities across Europe remains slow, with significant disparities between 
different countries. The EU aims to halve road deaths by 2030 as part of its Vision Zero 
strategy, but reaching this target will require sustained and coordinated efforts across 
all member states (European Commission, 2024). 

1.3 State of the Art 

1.3.1 The Importance of Driving Behavior Analysis 

Analyzing driver behavior is crucial for preventing road crashes and improving 
road safety, as human factors contribute to about 95% of road crashes (Singh, 2015). 
The NHTSA defines the critical reason for a crash as "the immediate reason for the 
critical pre-crash event and is often the last failure in the causal chain of events leading 
up to the crash" (Singh, 2018). Driving behavior, influenced by various factors, plays a 
significant role in road crashes (Dingus et al., 2016), and the road environment also 
impacts driving behavior (Horberry et al., 2006; Hamdar et al., 2016). 

Given current road safety challenges, exploring new approaches to crash 
reduction is essential, including using smartphone applications for data collection and 
analysis (Vlahogianni and Barmpounakis, 2017). Smartphones, equipped with sensors 
such as accelerometers, gyroscopes, and GPS, are valuable tools for transport studies 
and sensing applications without user engagement (Mantouka et al., 2018). 

In the car insurance market, analyzing driving behavior is also valuable. 
Programs like Pay-As-You-Drive (PAYD) charge drivers based on location and time of 
driving, promoting responsible driving and potentially reducing crash risk (Troncoso et 
al., 2010). The insurance industry has explored the correlation between aggressive 
driving behaviors, such as harsh accelerations and braking, and crash risk (Paefgen 
et al., 2014; Tselentis et al., 2017). 

1.3.2 Exploitation of Sensor Data 

Analyzing driver behavior is crucial, yet collecting reliable and high-resolution 
data presents challenges. Data can be gathered through questionnaires, simulators, 
in-vehicle data recorders, or smartphone sensors. Smartphones offer a low-cost, easy-
to-install platform for detecting driver behavior in naturalistic conditions (Papadimitriou 
et al., 2018). Modern mobile technologies using internal sensors provide real-time 
feedback on driving behavior, promoting safety and potentially reducing crashes by 
about 20% under specific conditions (Wouters and Bos, 2000). 

Studies have utilized vehicle-integrated systems and smartphone sensors to 
examine driving behavior, providing high-resolution, objective measurements and 
enabling real-time feedback to drivers. Feedback has been shown to encourage more 
careful and responsible driving (Roetting et al., 2003; Toledo et al., 2008). While there 
are significant correlations between vehicle recording systems and smartphone 
sensors, factors such as event type, smartphone location in the car, and external 
conditions can affect data quality (Paefgen et al., 2012). Due to the high cost of in-
vehicle systems, smartphone applications offer a feasible alternative for data 
collection. 

Additionally, spatial analysis of recorded road crashes, road characteristics, 
and census variables, along with geographic information systems, enhances road 
safety models (Ziakopoulos and Yannis, 2020a; Ziakopoulos and Yannis, 2020b; 
Abdel-Aty et al., 2013). 
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1.3.3 Merits of Harsh Event Analysis 

Analyzing road crashes is traditional in road safety science, but harsh events 
like accelerations and braking offer additional insights. These events correlate strongly 
with reduced spatial and temporal headways, near misses, and other risky behaviors 
(Tselentis et al., 2017; Bonsall et al., 2005; Gündüz et al., 2017; Paefgen et al., 2014). 

Harsh events can be analyzed as point-data, similar to crashes, revealing 
patterns and dependencies with independent parameters. An aggressive driver will 
exhibit elevated harsh events across all trips, indicating high-risk road segments 
(hotspots). These events provide proactive safety parameters, identifying hotspots 
before crashes occur. They are increasingly used in usage-based motor insurance 
(UBI) to represent crash occurrence probability (Tselentis et al., 2017). 

Research on factors influencing harsh events is limited compared to crash 
analysis, revealing significant gaps. Harsh accelerations and braking occur in different 
contexts and should not be analyzed collectively. Drivers with higher anger, frustration, 
and anxiety levels display higher acceleration values (Stephens and Groeger, 2009). 
Harsh braking events indicate reactions to safety-critical situations and are used as 
indicators in naturalistic driving studies (Hanowski et al., 2005; Olson et al., 2009; 
Zohar et al., 2014; Jansen and Wesseling, 2018). 

1.3.4 Traffic Safety Assessment Methods 

Traditional methods of traffic safety assessment have relied heavily on crash 
data from police reports, hospital records, and insurance claims. While these methods 
provide direct measures of traffic safety issues, they have significant limitations, 
including the rarity of crashes and potential underreporting (Hauer, 1997). This makes 
statistical analysis challenging due to small sample sizes. 

Near misses and other unsafe traffic events, such as harsh acceleration and 
deceleration, occur more frequently than crashes and can serve as early indicators of 
potential hazards. Research indicates that these events often precede crashes and 
can identify hazardous locations before crashes occur (Laureshyn, 2010). 
Intersections with high rates of near misses tend to have higher subsequent crash 
rates (Archer, 2005), allowing for a more proactive traffic safety strategy. 

The advent of smartphones has revolutionized data collection in traffic safety 
research. Equipped with sensors like accelerometers and gyroscopes, smartphones 
capture detailed information about driving behaviors, including sudden stops, sharp 
turns, and rapid accelerations. Studies have shown the potential of smartphone data 
to provide real-time insights into driver behavior and traffic conditions (Barić et al., 
2014). Smartphone applications for driver assistance and monitoring have been used 
to collect extensive data on unsafe traffic events, which can be analyzed to identify 
patterns and correlations with crash occurrences (Zhao et al., 2017). This enables 
continuous and widespread monitoring of traffic conditions, surpassing the capabilities 
of traditional methods. 

While traditional crash data remains vital, its limitations necessitate alternative 
data sources. Near misses and harsh driving events captured via smartphone apps 
complement crash data, allowing for more frequent and comprehensive traffic safety 
monitoring. However, integrating these new data sources into predictive models is an 
emerging field with several gaps. Key gaps include understanding the relationship 
between different types of unsafe events and actual crashes, determining the optimal 
spatiotemporal resolution for analyzing these events, and developing robust predictive 
models to forecast crashes based on unsafe event frequency and distribution. 

Leveraging smartphone app data to predict crashes represents a significant 
advancement in traffic safety research. This study aims to address some existing gaps 
by exploring the predictive power of near misses and harsh driving events, contributing 
to more proactive and effective traffic safety management strategies. 
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2. Methodology and Theoretical Background 

2.1 Data Exploitation  

Modelling driver behavior is a complex phenomenon that has long interested 
the scientific community. This study aims to investigate the combined influence of road 
characteristics and traffic on driver behavior, particularly in crash occurrence, using 
smartphone data on harsh acceleration and braking events in an urban intersection 
environment. Building on the work of Petraki et al. (2020), the research examines how 
the road environment and traffic conditions affect driving behavior at intersections, 
focusing on abrupt accelerations and braking. Conducted at a macroscopic level, the 
study area includes two major urban expressways in Athens—Mesogeion Avenue and 
Vouliagmenis Avenue—chosen for their similar traffic lane configurations and 
separated travel directions. These avenues provide a suitable context for analyzing 
the impact of road and traffic characteristics on driver behavior (see Error! Reference 
source not found.). 

 
The data analyzed in this 

study were sourced from three 
primary sources. First, driving 
behavior data were collected from 
approximately 300 drivers in Athens 
using the OSeven smartphone 
application, which records driving 
behavior. This data captures 
instances of unsafe traffic events, 
specifically harsh acceleration (HA) 
and braking (HB) events. The dataset 
includes metrics pertinent to traffic 

safety, such as the identification of junctions where specific events were recorded, 
traffic volume, average speed, and occupancy rate, providing a comprehensive 
overview of traffic conditions. 

Secondly, traffic metrics were obtained from the Traffic Management Center of 
the Attica region. These metrics, including traffic volume and average speeds, were 
collected through 26 loops installed at specific measurement points along the two 
studied urban expressways. Lastly, road characteristics were extracted using the 
Google Maps online mapping service, detailing features of road segments and 
intersections, including lane numbers and configurations. During data collection and 
processing, challenges were addressed to ensure dataset quality and reliability by 
standardizing data units and formats in Excel for consistency between sources, and 
by ensuring accurate spatial alignment in QGIS using precise geolocation data from 
Google Maps and cross-referencing with known traffic loop locations. 

Data integration involved merging driving behavior data from OSeven with 
traffic metrics from the Traffic Management Center and road characteristics from 
Google Maps. Spatial mapping using QGIS correlated abrupt driving events with 
specific road segments and intersections, resulting in a comprehensive database for 
analyzing harsh acceleration and braking events on the examined avenues. The 
OSeven application identifies harsh events through data fusion and machine learning 
algorithms, integrating input from accelerometers, GPS, gyroscopes, and other 
sensors, rather than using predefined thresholds. This methodology, supported by 
previous studies (Yannis et al., 2017; Tselentis et al., 2018, 2019; Stavrakaki et al., 
2019; Petraki et al., 2020; Papadimitriou et al., 2019), has proven effective in road 
safety research. The application adheres to GDPR regulations, ensuring no additional 
user information is collected, and its flexibility facilitates data acquisition without 
extensive vehicle instrumentation or costly methods (Ziakopoulos et al., 2020). 

Figure 1:Research Area - Mesogeion and Vouliagmenis 

Avenues. 
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A total of 303 drivers participated in a 
naturalistic driving experiment conducted in Athens 
between August 25, 2016, and November 26, 2017, 
resulting in the creation of extensive databases of 
harsh acceleration and deceleration events. 
Specifically, during this period, 4,869 harsh 
accelerations and 2,181 harsh braking were recorded 
on Mesogeion Avenue, while 3,723 harsh 
accelerations and 1,765 harsh braking were 
documented on Vouliagmenis Avenue (see Error! 

Reference source not found.).  

2.2 Statistical Background  

The data was analyzed at varying spatial and temporal resolutions to explore 
the relationship between unsafe traffic events and crash occurrences, focusing on 
harsh acceleration and braking events. Spatial resolution was assessed at the level of 
road intersections (Junctions of Mesogeion - JK and Junctions of Vouliagmenis - JV), 
while temporal resolution was evaluated on a monthly, weekly, and daily basis. GIS 
tools were used to map each unsafe traffic event to specific sites, facilitating the 
analysis of their spatial distribution in relation to crash occurrences. The spatial 
analysis was followed by statistical analysis, expanding on Petraki et al. (2020) by 
including further investigation into Speed Difference and Event Speed (minimum, 
maximum, and standard deviation). This investigation aimed to identify high 
correlations between dependent variables and influencing factors, using the 
Generalized Linear Model (GLM). 

Generalized Linear Models are particularly suitable for transportation research 
due to their flexibility in handling various types of data distributions, such as binomial, 
Poisson, and normal distributions. Previous studies have demonstrated the 
effectiveness of GLMs in modeling relationships where the response variable does not 
necessarily follow a normal distribution, making them ideal for analyzing transportation 
data such as accident counts or binary outcomes (accident occurred or not).   

The Generalized Linear Model (GLM) uses a linear predictor to model the log 
odds of the outcome. According to McCulloch (2008), if yi represents the observed 
frequency of harsh events per trip i (considering harsh braking and harsh acceleration 
separately), and λi represents the expected frequency of these events, the model can 

be specified as yi  Poisson (λi) (1). The linear predictor in this case is expressed as in 
equation (2): 

log (λi) = β0+βnxn+ε    (2) 
Here, β includes the fixed-effect parameters (constant and coefficients) for the 

n independent variables, and ε is the error term. The GLM can be expanded into a 
Generalized Linear Mixed Model (GLMM) by incorporating random effects. In GLMMs, 
random effects are represented as random variable coefficients (random slopes) or 
random intercepts as in Equation (3): 

log (λi) = β0i + βjixji + βn-1xn-1 + ε    (3) 
In this formulation, β0i and βjiare assumed to follow normal distributions 

centered around the values of their corresponding fixed effects: 

β0i  N (β0, σ
2
s0)    (4) 

βji   N (β0, σ
2
s0)    (5) 

Interpreting these coefficients is more straightforward when using relative risk 
ratios (also known as incidence rate ratios). These ratios transform the predictor to 
reflect the frequency. For an increase of one unit in a specific variable k, while keeping 
all other parameters constant, the predicted frequency λi is scaled by Equation (6): 

λki = exp (βki) * λi    (6) 
As noted by McCulloch (2011), models with random effects can accommodate 

correlated independent variables, thus overcoming some of the limitations of traditional 

Figure 2: Comparison of Harsh 
Accelerations and Braking on the 
two avenues. 
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GLMs. Additionally, to facilitate the fitting of the GLMM, the trip data was standardized 
using z-score scaling. This is a common practice that does not alter the coefficients 
obtained from the analysis. 

The model that best fits the data—containing the most informative variable 
combination and explaining the highest degree of variance—is chosen based on the 
minimum AIC. It's important to emphasize that the contribution of any random effects 
is evaluated by performing a custom ANOVA (log-likelihood test) comparing the fixed 
effects GLM with any developed GLMMs. 

For both Ha and Hb models, a mixed-effects model with random intercepts 
(GLMER) was used alongside the base GLM. This included random intercepts for 
junctions on Mesogeion Avenue (JM) and Vouliagmenis Avenue (JV). A likelihood ratio 
test confirmed the GLMER model's significant improvement over the GLM. The 
regression models examined the influence of driving behavior, traffic characteristics, 
and road geometry on harsh event frequency, with all variables except one being 
statistically significant. Multicollinearity was checked using VIF values, all below 5, 
ensuring robustness. This approach highlights the importance of local variations and 
specific road characteristics in traffic safety analysis, providing a solid foundation for 
targeted interventions. The following sections present the analysis results and discuss 
their implications. 

3. Results and Discussion 

3.1 Descriptive Statistics of the Data 

The dataset presents traffic event data for various junctions, classified into two 
types, Junctions of Mesogeion (JM) and Junctions of Vouliagmenis (JV). The data 
includes metrics on vehicle flow (Q[Veh/h]), average speed (V [km/h]), occupancy 
(O[%]), and various statistics on speed differences and distances. This analysis aims 
to explore the relationship between unsafe traffic events, such as harsh 
acceleration/braking, and crash occurrences. 

The dataset includes detailed 
measurements for each junction, 
categorized by junction type, with key 
variables such as the number of lanes, 
vehicle flow rate, average speed, and 
metrics on speed differences and 
distances.  visually represents these 
traffic metrics, showing variations in 
vehicle flow, speed, occupancy, and 
accident frequency across different 
junctions, identifying this way high-risk 
junctions, enabling targeted safety 
and efficiency measures. 

Vehicle flow (Q[Veh/h]) ranges 
from 2061.391 (JM20) to 3001.898, 
with the highest flow observed at 

Junction 6 of Vouliagmeni (JV6). The average speed (V [km/h]) varies significantly, 
with Junction 7 of Mesogeion (JM7) having the highest average speed of 80.237 km/h 
and Junction 9 of Vouliagmeni (JV9) the lowest at 51.869 km/h. This variation indicates 
different traffic conditions and congestion levels at various junctions. 

Metrics on speed differences such as mean_Speed_Diff, min_Speed_Diff, and 
max_Speed_Diff provide insights into the variability of speeds at different junctions. 
For instance, JV9 has the highest max_Speed_Diff of 30.946, indicating significant 
speed variations which could be a risk factor for crashes. The dataset also includes 
event-specific speed metrics such as mean_Event_Speed and range_Event_Speed. 
High values in these metrics, such as the range_Event_Speed of 75.010 at JM15, 

Figure 3:Visual representation of key traffic metrics 
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suggest significant fluctuations during events, potentially indicating harsh braking or 
acceleration. 

Occupancy (O[%]) values highlight the percentage of time the junction is 
occupied by vehicles. Higher occupancy rates, like the 9.749% at JM7, can correlate 
with higher traffic density and potential congestion. Frequency_acceleration denotes 
the frequency of accident occurrences, with values like 306 at JM16 indicating a higher 
incidence of crashes. Distance metrics such as mean_distance, min_distance, and 
max_distance provide spatial insights. For example, JM9 has a maximum distance 
(max_distance) of 152.245, which might indicate larger junctions or intersections, 
potentially affecting traffic flow and safety. 

3.2 Statistical Modelling Results 

In this section, the outcomes of the statistical analyses are being presented. 
The GLM analysis involved fitting a Poisson regression model to predict crash 
frequency, based on various predictors. The summary of the GLM provides key 
insights into the coefficients and their significance levels (p-values), which indicate the 
strength and reliability of each predictor. Additionally, model fit statistics such as AIC 
and Deviance were calculated to assess the model's overall performance. These 
metrics provide a quantitative measure of how well the model explains the data. 

To account for within-group correlation, a Generalized Linear Mixed Model 
(GLMM) was fitted, including a random intercept for `Junct_Type`. The GLMM 
summary highlights the coefficients and random effects, along with their significance 
levels. This model offers an enhanced understanding of the variability within junction 
types, which is not captured by the GLM. Similar to the GLM, model fit statistics such 
as AIC and Deviance were reported, allowing for a direct comparison between the two 
modeling approaches. 

To ensure the robustness of the predictors, VIF values were calculated to 
assess multicollinearity. High VIF values indicate potential redundancy among 
predictors, which can affect the model's stability and interpretability. By addressing 
multicollinearity, the reliability of the model coefficients is being improved. 

Results of the performed log-likelihood ratio test are being conducted, 
comparing the GLM and GLMM models. This test evaluates whether the inclusion of 
random effects significantly improves the model fit, providing statistical justification for 
the use of GLMM over GLM. Furthermore, a caterpillar plot was created to visualize 
the random effects from the GLMM model. This plot aids in the interpretation of the 
random effects associated with different junction types, highlighting variations that may 
influence crash frequencies. The visual representation provides a clear and intuitive 
understanding of how junction types contribute to the model. 

In summary, the results of the statistical analyses, including GLM and GLMM 
summaries, VIF values, log-likelihood ratio test, and caterpillar plot, collectively offer a 
comprehensive understanding of the factors influencing crash frequencies. These 
findings underscore the importance of considering both fixed and random effects in 
transportation safety research. To model the expected frequency of accelerating (Ha) 
and braking (Hb) events, GLM-based models were calibrated as previously explained. 
Given the high-resolution, big-data collection scheme, random effects were included 
to capture unique driving behavior traits for each driver.  
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The Poisson regression model 

identifies significant predictors of crash 
frequency at junctions using harsh 
acceleration events. The highly 
significant intercept term (3.901915) 
indicates a strong baseline crash 
frequency. Key speed-related variables 
include MIN_Speed_Diff (-0.104340) 
and MAX_Speed_Diff (0.082100), both 
statistically significant, with 
MIN_Speed_Diff reducing and 
MAX_Speed_Diff increasing crash 
frequency. MAX_Event_Speed 
(0.018499) is positively associated with 
crash frequency, while 
STD_Event_Speed (-0.128158) shows 

a negative association. Junction characteristics like Right_Exits (0.299347) are linked 
to higher crash frequency, whereas more Outgoing_Lanes (-0.126292) correlate with 
fewer crashes. Sideway (0.046146) is not statistically significant (p = 0.182).  

Model diagnostics show a null deviance of 1435.25 and a residual deviance of 
461.27, indicating the model explains significant variability in crash frequency. An AIC 
value of 696.21 suggests a good model fit, with a dispersion parameter of 1, indicating 
no overdispersion. Thus, the Poisson regression model highlights key predictors of 
crash frequency, informing strategies to reduce crashes by targeting specific junction 
characteristics and traffic dynamics. 

The GLMER with random intercepts provides additional insights. The highly 
significant intercept estimate (3.609952) indicates a strong baseline crash frequency. 
MIN_Speed_Diff has a negative estimate (-0.082331), suggesting fewer crashes with 
increased minimum speed difference. Conversely, MAX_Speed_Diff has a positive 
estimate (0.076991), indicating more crashes with higher maximum speed differences. 
MAX_Event_Speed shows a positive estimate (0.015155), linking higher speeds 
during events to increased crash frequency. STD_Event_Speed has a significant 
negative estimate (-0.108751), implying fewer crashes with greater speed variability. 
Right_Exits has a positive estimate (0.198172), indicating higher crash frequencies at 
junctions with more right exits. Outgoing_Lanes has a non-significant estimate 
(0.003163), suggesting no significant impact on crash frequency. Sideway has a 
significant positive estimate (0.119132), indicating a positive association with crash 
frequency. 

In conclusion, the GLMER model with random intercepts identifies significant 
predictors of crash frequency at junctions, including speed differences, maximum 
event speed, and standard deviation of event speeds. These findings highlight crucial 
factors for traffic management strategies aimed at reducing crashes. 

Following the analysis of harsh acceleration events, the same methodology 
was used to predict the frequency of harsh braking events using various predictor 
variables. The intercept is estimated at 37.638361 with a standard error of 5.876399, 
indicating a strong baseline frequency of harsh braking events when all predictors are 
zero. 

Among the key predictor variables, MIN_Speed_Diff has an estimate of -
0.095534 with a standard error of 0.015099, which is highly significant, suggesting that 
an increase in the minimum speed difference is associated with a decrease in harsh 
braking events. Conversely, MAX_Speed_Diff has a positive estimate of 2.861064 with 
a standard error of 0.445999, indicating that higher maximum speed differences lead 
to an increase in harsh braking events. MAX_Event_Speed has an estimate of 
0.026445 with a standard error of 0.001967, highly significant, showing that higher 

Coefficients: Fixed effects:

                 Estimate Std.Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|)

(Intercept)     3.901915 0.135481 28.8 < 2e-16 *** (Intercept) 3.609952 0.224784 16.06 < 2e-16  ***

MIN_Speed_Diff  -0.10434 0.011044 -9.448 < 2e-16 *** MIN_Speed_Diff -0.082331 0.011598 -7.099 1.26E-12  ***

MAX_Speed_Diff   0.0821 0.005783 14.196 < 2e-16 *** MAX_Speed_Diff 0.076991 0.00591 13.027 < 2e-16  ***

MAX_Event_Speed 0.018499 0.001451 12.752 < 2e-16 *** MAX_Event_Speed 0.015155 0.001523 9.954 < 2e-16  ***

STD_Event_Speed -0.128158 0.008623 -14.863 < 2e-16 *** STD_Event_Speed -0.108751 0.009211 -11.807 < 2e-16  ***

Right_Exits      0.299347 0.026149 11.448 < 2e-16 Right_Exits 0.198172 0.030031 6.599 4.14E-11  ***

Outgoing_Lanes  -0.126292 0.016905 -7.471 0.00000000000008 *** Outgoing_Lanes 0.003163 0.024918 0.127 0.898988

Sideway         0.046146 0.03461 1.333 0.1820 Sideway 0.119132 0.035797 3.328 0.000875  ***

---

Coefficients: Fixed effects:

                 Estimate Std.Error z value Pr(>|z|) Estimate Std. Error z value Pr(>|z|)

(Intercept)     37.638361 5.876399 6.405 0.0000000001504 *** (Intercept) 32.554388 6.144945 5.298 1.17E-07 ***

MIN_Speed_Diff  -0.095534 0.015099 -6.327 0.0000000002498 *** MIN_Speed_Diff -0.05591 0.020027 -2.792 0.005242 **

MAX_Speed_Diff   2.861064 0.445999 6.415 0.0000000001409 *** MAX_Speed_Diff 2.432157 0.470467 5.17 2.35E-07 ***

MAX_Event_Speed 0.026445 0.001967 13.446 < 2e-16 *** MAX_Event_Speed 0.024633 0.002078 11.855 < 2e-16 ***

STD_Event_Speed -0.103621 0.010318 -10.043 <2e-16 *** STD_Event_Speed -0.089453 0.011272 -7.936 2.10E-15 ***

Right_Exits      0.263377 0.061958 4.251 0.0000212902784 *** Right_Exits 0.225168 0.063591 3.541 0.000399 ***

Outgoing_Lanes  -0.101075 0.04165 -2.427 0.015200 * Outgoing_Lanes -0.042743 0.046657 -0.916 0.359619

Sideway         0.493532 0.074886 6.59 0.0000000000439 *** Sideway 0.568168 0.078439 7.243 4.37E-13 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Exploring the relationship between unsafe traffic events and crash occurrence using harsh braking events

glm(formula = FREQUENCY_BRK ~ MIN_Speed_Diff + MAX_Speed_Diff + MAX_Event_Speed + STD_Event_Speed + Right_Exits + 

Outgoing_Lanes + Sideway, family = poisson, data = Vdata)

Base GLM model results Random intercepts GLMER model:

Exploring the relationship between unsafe traffic events and crash occurrence using harsh acceleration events

glm(formula = FREQUENCY_ACC ~ MIN_Speed_Diff + MAX_Speed_Diff + MAX_Event_Speed + STD_Event_Speed + Right_Exits + 

Outgoing_Lanes + Sideway, family = poisson, data = Vdata)

Base GLM model results Random intercepts GLMER model:

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 4: Generalized linear models results  
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maximum speeds during events are linked to more frequent harsh braking events. In 
contrast, STD_Event_Speed has a negative estimate of -0.103621 with a standard 
error of 0.010318, also highly significant, indicating that greater speed variability is 
associated with fewer harsh braking events. 

The presence of right exits is associated with an increase in harsh braking 
events, with an estimate of 0.263377 and a standard error of 0.061958, highly 
significant. On the other hand, the number of outgoing lanes has a negative estimate 
of -0.101075 with a standard error of 0.04165, which is significant, suggesting that 
more outgoing lanes are associated with fewer harsh braking events. Additionally, the 
presence of a sideway has a significant positive impact on the frequency of harsh 
braking events, with an estimate of 0.493532 and a standard error of 0.074886. 

In conclusion, the GLM identifies several key predictors of harsh braking 
events, including speed-related factors and junction characteristics. The GLMER with 
random intercepts provides further insights into predictors of harsh braking events, 
accounting for variability across different junction types. The intercept estimate is 
32.554388 with a standard error of 6.144945, indicating a substantial baseline 
frequency of harsh braking events when all other predictors are zero. Both models 
identify critical predictors of harsh braking events, providing valuable insights for traffic 
management strategies aimed at reducing such events by focusing on speed 
differences, maximum event speed, and junction characteristics. 

For MIN_Speed_Diff, the estimate is -0.05591 with a standard error of 
0.020027, suggesting that increased minimum speed difference is associated with 
fewer harsh braking events. MAX_Speed_Diff has a positive estimate of 2.432157 with 
a standard error of 0.470467, indicating that higher maximum speed differences lead 
to more harsh braking events. 

MAX_Event_Speed has an estimate of 0.024633 with a standard error of 
0.002078, demonstrating that higher speeds during events are linked to more frequent 
harsh braking events. STD_Event_Speed has a negative estimate of -0.089453 with a 
standard error of 0.011272, highly significant, suggesting that greater speed variability 
is associated with fewer harsh braking events. 

Right_Exits has a positive estimate of 0.225168 with a standard error of 
0.063591, indicating that more right exits are associated with an increase in harsh 
braking events. Conversely, Outgoing_Lanes has a negative estimate of -0.042743 
with a standard error of 0.046657, suggesting no strong evidence of its impact on harsh 
braking events. Sideway has a significant positive impact, with an estimate of 0.568168 
and a standard error of 0.078439. 

In conclusion, the GLMER model with random intercepts highlights several 
significant predictors of harsh braking events, including speed differences, maximum 
event speed, variability in event speeds, and junction characteristics like the presence 
of right exits and sideway. These findings underscore the importance of considering 
these factors in traffic management and safety strategies to mitigate the frequency of 
harsh braking events. 

 
The VIF scores provide insights into 

multicollinearity among predictors in both the 
base GLM and the GLMER with random 
intercepts. For acceleration events (see Error! 
Reference source not found., upper side), 
the base GLM model shows MIN_Speed_Diff 
with a VIF of 2.036474, indicating moderate 
multicollinearity. Other variables, including 
MAX_Speed_Diff (1.853465), 

MAX_Event_Speed (1.772092), STD_Event_Speed (1.77632), Right_Exits 
(1.768705), and Sideway (1.465606), exhibit low multicollinearity. Outgoing_Lanes 
has a higher VIF of 3.948076, indicating moderate to high multicollinearity. The 

MIN_Speed_Diff MAX_Speed_Diff MAX_Event_Speed STD_Event_Speed Right_Exits Outgoing_Lanes Sideway

2.036474 1.853465 1.772092 1.77632 1.768705 3.948076 1.465606

MIN_Speed_Diff MAX_Speed_Diff MAX_Event_Speed STD_Event_Speed Right_Exits Outgoing_Lanes Sideway

1.903179 1.860567 1.868247 1.843664 2.180624 3.54389 1.219679

MIN_Speed_Diff MAX_Speed_Diff MAX_Event_Speed STD_Event_Speed Right_Exits Outgoing_Lanes Sideway

2.162926 1.106514 1.813739 1.725633 2.031507 2.88136 1.404447

MIN_Speed_Diff MAX_Speed_Diff MAX_Event_Speed STD_Event_Speed Right_Exits Outgoing_Lanes Sideway

1.173837 1.076654 1.991475 2.006422 2.036128 1.96741 1.451817

Exploring the relationship between unsafe traffic events and crash occurrence using harsh acceleration events

VIF scores for the Base GLM  model:

VIF scores for the Random intercepts GLMER model:

Exploring the relationship between unsafe traffic events and crash occurrence using harsh braking events

VIF scores for the Base GLM  model:

VIF scores for the Random intercepts GLMER model:

Figure 5: VIF scores results. 
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GLMER model generally shows lower VIF scores: MIN_Speed_Diff (1.903179), 
MAX_Speed_Diff (1.860567), MAX_Event_Speed (1.868247), and 
STD_Event_Speed (1.843664) indicate low multicollinearity, while Right_Exits 
(2.180624) and Outgoing_Lanes (3.54389) suggest moderate to high multicollinearity. 
Sideway has the lowest VIF at 1.219679, indicating very low multicollinearity. 

For harsh braking events (see Error! Reference source not found., bottom 
side), the base GLM model shows MIN_Speed_Diff with a VIF of 2.162926, indicating 
moderate multicollinearity, and MAX_Speed_Diff with a VIF of 1.106514, suggesting 
very low multicollinearity. MAX_Event_Speed (1.813739) and STD_Event_Speed 
(1.725633) show low multicollinearity, while Right_Exits (2.031507) and 
Outgoing_Lanes (2.88136) indicate moderate multicollinearity. Sideway has the lowest 
VIF at 1.404447, indicating low multicollinearity. In the GLMER model, VIF scores are 
generally lower: MIN_Speed_Diff (1.173837), MAX_Speed_Diff (1.076654), 
MAX_Event_Speed (1.991475), STD_Event_Speed (2.006422), and Outgoing_Lanes 
(1.96741) indicate low multicollinearity. Right_Exits (2.036128) shows moderate 
multicollinearity, while Sideway (1.451817) has low multicollinearity. 

In summary, the VIF scores indicate low to moderate multicollinearity for most 
predictors in both models, with Outgoing_Lanes showing the highest multicollinearity 
in harsh braking events, and slightly lower VIF scores in the GLMER model suggesting 
that random intercepts help mitigate multicollinearity, thereby affirming the robustness 
of the models and the reliability of the predictors in explaining crash frequency at 
junctions for harsh accelerating and braking events. 

 
The results of the LRT provide a 

comparison between the base GLM (Model 
1) and the GLMM (Model 2) with random 
intercepts for junction type, conducting both 
for harsh accelerating(upper side) and 
braking events(bottom side), as shown in 
Error! Reference source not found.. 

For harsh accelerating events: In 
Model 1, the predictors include 
MIN_Speed_Diff, MAX_Speed_Diff, 
MAX_Event_Speed, STD_Event_Speed, 
Right_Exits, Outgoing_Lanes, and Sideway. 
This model yields a log-likelihood of -340.1. 
Model 2 includes the same predictors as 

Model 1, but also incorporates a random intercept for junction type. This model 
achieves a log-likelihood of -318.01. The difference in degrees of freedom (Df) 
between the two models is 1. The chi-squared value for the test is 44.185, with a 
corresponding p-value of 0.00000000003, which is highly significant (p < 0.001). 

The significant result of the LRT indicates that the inclusion of a random 
intercept for junction type significantly improves the model fit. Therefore, the GLMER 
model (Model 2) is statistically superior to the base GLM model (Model 1). This finding 
suggests that accounting for variability in accident frequency across different junction 
types provides a better understanding of the factors influencing accident occurrences. 

For harsh braking events: Model 1, which includes the predictors 
MIN_Speed_Diff, MAX_Speed_Diff, MAX_Event_Speed, STD_Event_Speed, 
Right_Exits, Outgoing_Lanes, and Sideway, yields a log-likelihood of -138.31. Model 
2 includes the same predictors as Model 1 but adds a random intercept for junction 
type (Junct_Type), resulting in a log-likelihood of -135.82. The difference in Df between 
the two models is 1. The chi-squared value for the test is 4.9793, with a corresponding 
p-value of 0.02565, which is significant at the 5% level. 

The significant result of the LRT indicates that including a random intercept for 
junction type significantly improves the model fit. Therefore, the GLMER model (Model 

#Df LogLik Df Chisq Pr(>Chisq)

1 8 -340.1

2 9 -318.01 1 44.185 0.00000000003 ***

#Df LogLik Df Chisq Pr(>Chisq)

1 8 -138.31

2 9 -135.82 1 4.9793 0.02565 *

LRT results:

Model 1: FREQUENCY_BRK ~ MIN_Speed_Diff + MAX_Speed_Diff + MAX_Event_Speed + STD_Event_Speed + 

Right_Exits + Outgoing_Lanes + Sideway

Model 2: FREQUENCY_BRK ~ MIN_Speed_Diff + MAX_Speed_Diff + MAX_Event_Speed +     STD_Event_Speed + 

Right_Exits + Outgoing_Lanes + Sideway + (1 | Junct_Type)

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

LRT = significant, so GLMER is better

Likelihood ratio test

Model 1: FREQUENCY_ACC ~ MIN_Speed_Diff + MAX_Speed_Diff + MAX_Event_Speed + STD_Event_Speed + 

Right_Exits + Outgoing_Lanes + Sideway

Model 2: FREQUENCY_ACC ~ MIN_Speed_Diff + MAX_Speed_Diff + MAX_Event_Speed + STD_Event_Speed + 

Right_Exits + Outgoing_Lanes + Sideway + (1 | Junct_Type)

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

LRT = significant, so GLMER is better

Exploring the relationship between unsafe traffic events and crash occurrence using harsh braking events

Likelihood ratio test

Exploring the relationship between unsafe traffic events and crash occurrence using harsh acceleration events

Figure 6: Likelihood Ratio Test (LRT) results. 
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2) is statistically superior to the base GLM model (Model 1). This finding suggests that 
accounting for variability in harsh braking frequency across different junction types 
provides a better understanding of the factors influencing these events, highlighting 
the importance of incorporating random effects in the model.  

 
The Error! Reference source 

not found. displays random intercepts 
plots for urban arterial corridors (JM and 
JV) in two models: harsh braking events 
(HBs) on the left and harsh acceleration 
events (HAs) on the right. For HBs, 
corridor JM has an intercept slightly 
above zero, indicating a higher baseline 

frequency of harsh braking events compared to the overall average, while corridor JV 
has an intercept below zero, suggesting a lower baseline frequency. Similarly, for HAs, 
corridor JM shows a higher baseline frequency (intercept above zero) and corridor JV 
a lower one (intercept below zero). This variability underscores the importance of 
including random effects in the models to capture unique characteristics of each 
corridor, providing more precise insights into factors influencing harsh braking and 
acceleration events and enhancing the understanding of traffic dynamics and safety 
measures. 

4. Conclusion, Limitations and Future Research 

This study assessed the impact of harsh acceleration and braking events on 
crash frequency at junctions on two urban expressways in Athens. Using high-
resolution smartphone data from 303 drivers, traffic data from 26 loops, and Google 
Maps Road characteristics, the study evaluated GLM and GLMM. 

The GLM showed significant predictors with an AIC of 292.63 and residual 
deviance of 106.87 on 25 degrees of freedom. Adding a random intercept for junction 
type in the GLMM improved model fit, with a lower AIC (289.6) and better log-likelihood 
(-135.82). The log-likelihood ratio test confirmed the GLMM's superior fit (p = 0.02565). 
Significant predictorsincludedMIN_Speed_Diff,MAX_Speed_Diff, MAX_Event_Speed, 
STD_Event_Speed, Right_Exits, and Sideway. The caterpillar plot indicated higher 
baseline crash frequencies for junction type JM compared to JV. VIF values below 5 
indicated low multicollinearity. 

Findings suggest practical safety measures: reducing speed variability through 
consistent limits and enforcement, enhancing driver awareness, and improving 
junction design with clearer signage, dedicated right-turn lanes, and better sight lines. 
Well-marked sideway areas for pedestrians and cyclists can also enhance safety. 

The study highlights the importance of considering both fixed and random 
effects in traffic safety analysis. The higher crash risk at junction type JM suggests 
interventions like targeted enforcement and junction redesign. Future research should 
collect more detailed data on driver behavior, traffic flow, and environmental 
conditions, and use advanced modeling techniques like machine learning to gain 
deeper insights. Addressing limitations such as the small sample size of 33 junctions, 
data accuracy issues, and excluded factors like weather, demographics, and vehicle 
types can enhance applicability across different contexts. 
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