

17 October 2024

Exploring the Relationship Between Unsafe Traffic Events and Crash Occurrences Using Smartphone App Data

Paraskevi Koliou

Ph.D., Senior Research Engineer, National Technical University of Athens (NTUA) Together with A. Ziakopoulos, V. Petraki & G. Yannis

Department of Transportation Planning and Engineering National Technical University of Athens

irf2024.irfofficial.org

Significance of Study

- Road crashes are a significant public health issue, with over 1.35 million annual fatalities worldwide
- Current road safety measures show slow progress, necessitating new approaches for crash prediction and prevention.
- Unsafe traffic events, such as harsh accelerations and braking, occur more frequently and are easily obtainable using smartphone app data.
- Leveraging real-time data from smartphone sensors offers a proactive approach to traffic safety analysis and intervention.

State-of-the-art

Driving Behaviour Analysis

Human factors contribute to ~95% of crashes. Analysing behaviours like harsh braking and acceleration is crucial (Singh, 2015).

Sensor Data for Traffic Safety

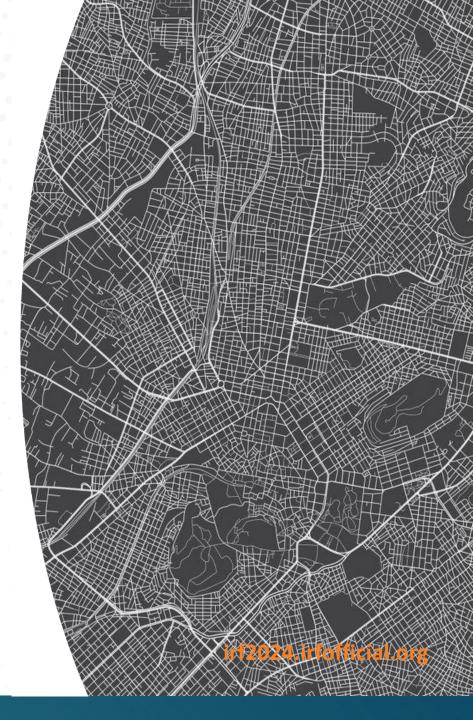
Smartphone-based data (accelerometers, GPS) has revolutionised behaviours monitoring and safety modelling (Mantouka et al., 2018).

Use of Harsh Event Data

Point-data analysis of harsh events predicts high-risk zones ('hotspots') proactively, improving safety measures (Tselentis et al., 2017).

Research Objectives

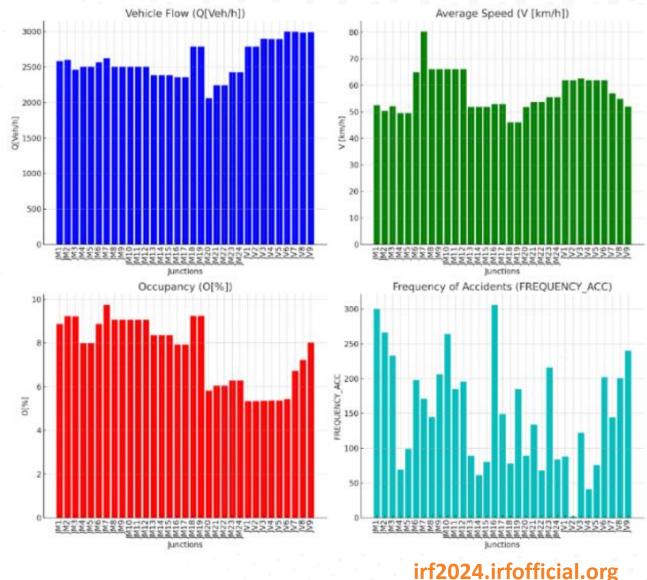
- To assess the correlation between unsafe traffic events (e.g., harsh acceleration, braking) and crash occurrences.
- To analyse spatiotemporal patterns of these events using smartphone app data to investigate driver behaviours and safety perception.
- To develop and evaluate regression models to enhance crash prediction accuracy at two of the most used avenues and their intersections in Athens:
 - (i) Mesogeion Avenue
 - (ii) Vouliagmeni Avenue


Methodology: Data Sources

• Driving Behavior Data: Collected from ~300 drivers in Athens using the OSeven smartphone app, recording instances of harsh acceleration and braking.

• Traffic Metrics: Obtained from the Attica Traffic Management Center, including traffic volume, average speeds, and occupancy rates.

• Road Characteristics: Extracted from Google Maps, detailing lane configurations and intersection characteristics.

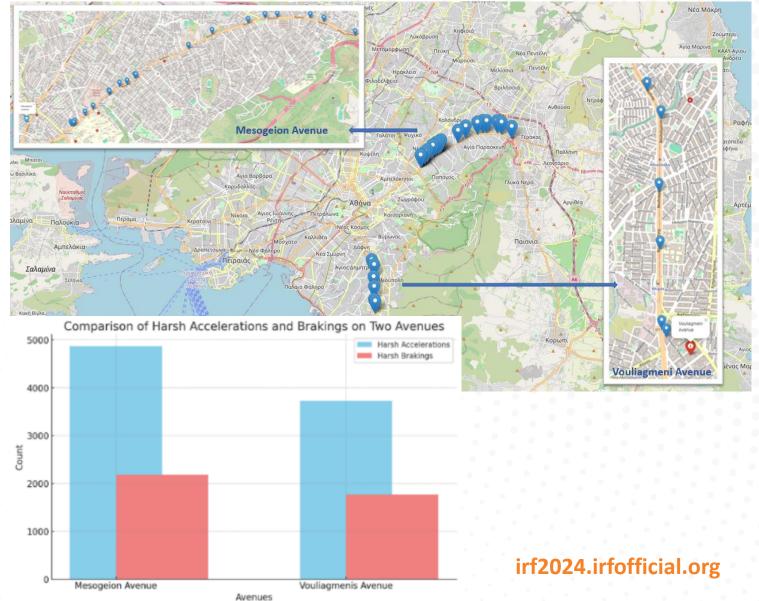


Descriptive Statistics & Patterns

• **Traffic event data** categorised by junctions (avenues of Mesogeion-JM and Vouliagmeni-JV).

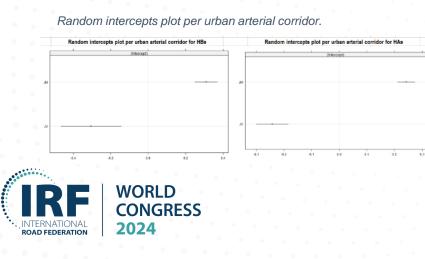
 Analysis of variables such as vehicle flow (max J6 – Vouliagmeni), average speed (and max J7 – Mesogeion), occupancy rate (J7-Mesogeion), and frequency of accidents at intersections.

• Identification of high-risk junctions for targeted intervention


Data Integration & Analysis

• Spatial Mapping: GIS tools were used to correlate unsafe events with specific road segments and intersections.

• Data Standardization: Ensured consistency in data units and formats.


• Event Detection: Harsh events are identified via machine learning algorithms using smartphone sensor data (accelerometer, GPS).

Modeling Approach

- 1. Generalized Linear Models (GLM): Assessed predictor like speed difference, junction characteristics, and traffic metrics.
- Generalized Linear Mixed Models (GLMM): Included 2. random effects for road junction types to capture variability in crash frequency.
- Model Diagnostics: AIC values, deviance, and VIF 3. scores for model selection and validation.

Exploring the relationship between ur	safe traffic events and c	ras	sh occu	rrence using har	sh	acceleratio	n events
	LRT results:						
	Likelihood ratio te	est					
Model 1: FREQUENCY_ACC ~ MIN_S Ri	peed_Diff + MAX_Speed_ ght_Exits + Outgoing_Lan				+ S	TD_Event_	Speed +
Model 2: FREQUENCY_ACC ~ MIN_S Right_Exits	peed_Diff + MAX_Speed_ + Outgoing_Lanes + Side	_			+ S	TD_Event_	Speed +
#Df LogLik	[Df	Chisq	Pr(>Chisq)			
1 8	-340.1						
2 9	-318.01	1	44.185	0.0000000003	***		
Signif. codes: 0 ***	*' 0.001 '**' 0.01 '*' 0.05 '.	' 0.	.1 ' ' 1				
	LRT = significant, so GLM	IEF	R is bette	er			
Exploring the relationship between	unsafe traffic events and	l ci	rash oco	currence using h	ars	h braking	events
and the second	Likelihood ratio te	est					
Model 1: FREQUENCY_BRK ~ MIN_S Ri	peed_Diff + MAX_Speed_ ght_Exits + Outgoing_Lan				⊦ S'	TD_Event_	Speed +
Model 2: FREQUENCY_BRK ~ MIN_Sp Right_Exits	eed_Diff + MAX_Speed_[+ Outgoing_Lanes + Side				Ş	STD_Event	_Speed
#Df LogLik	[Df	Chisq	Pr(>Chisq)			
1 8	-138.31						
2 9	-135.82	4	4,9793	0.02565	+		

I RT = significant so GI MER i

gintionnaid		-			_	/ = poisson, data = Vo	_	Litent_oper	su · rugn	(_EXILO -	_
	Base G	LM model	results	Random intercepts GLMER model:							
Coefficients:					1	Fixed effects:					
	Estimate	Std.Error	z value	Pr(> z)			Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.901915	0.135481	28.8	< 2e-16	***	(Intercept)	3.609952	0.224784	16.06	< 2e-16	,
MIN_Speed_Diff	-0.10434	0.011044	-9.448	< 2e-16	***	MIN_Speed_Diff	-0.082331	0.011598	-7.099	1.26E-12	*
MAX_Speed_Diff	0.0821	0.005783	14.196	< 2e-16	***	MAX_Speed_Diff	0.076991	0.00591	13.027	< 2e-16	,
MAX_Event_Speed	0.018499	0.001451	12.752	< 2e-16	***	MAX_Event_Speed	0.015155	0.001523	9.954	< 2e-16	*
STD_Event_Speed	-0.128158	0.008623	-14.863	< 2e-16	***	STD_Event_Speed	-0.108751	0.009211	-11.807	< 2e-16	,
Right_Exits	0.299347	0.026149	11.448	< 2e-16		Right_Exits	0.198172	0.030031	6.599	4.14E-11	,
Outgoing_Lanes	-0.126292	0.016905	-7.471	0.00000000000008	***	Outgoing_Lanes	0.003163	0.024918	0.127	0.898988	
Sideway	0.046146	0.03461	1.333	0.1820		Sideway	0.119132	0.035797	3.328	0.000875	1
			<u> </u>			0.01 '*' 0.05 '.' 0.1 ' '		h hasting			
		Y_BRK ~ I	MIN_Spee	ed_Diff + MAX_Spee	ed_D	nd crash occurrence Diff + MAX_Event_Sp y = poisson, data = Vo	eed + STD_I			t_Exits +	
	Base G	LM model	results		-	Rar	ndom interce	pts GLMER	model:		
Coefficients:						Fixed effects:					
	Estimate	Std.Error	z value	Pr(> z)			Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	37.638361	5.876399	6.405	0.000000001504	***	(Intercept)	32.554388	6.144945	5.298	1.17E-07	*1
MIN_Speed_Diff	-0.095534	0.015099	-6.327	0.000000002498	***	MIN_Speed_Diff	-0.05591	0.020027	-2.792		
MAX Canad Diff	0.004004	0 445000	C 445	0.000000001400	***	MAX Canad Diff	0 400457	0 470407	E 47	0.000 07	*1

13.446 < 2e-16

-10.043 <2e-16

0.0000212902784

4.251

-2 42

1.076654

MAX Event Spee

STD Event Speed

Outgoing_Lanes

Right Exits

Sideway

0.026445

-0.103621

0.263377

-0.101075

0.493532

1.17383

0.010318

0.061958

0 04165

074886

Generalized linear models results

Exploring the relationship between unsafe traffic events and crash occurrence using harsh acceleration events Sneed Diff + MAX Sneed Diff + MAX Event Sneed +

			Sigi	III. COC	ies: 0 .00	0.01	0.05 . 0.					
					VIF s	cores	results					
Ex	ploring the r	elatior	nship betwee	en uns	afe traffic ever	its and cra	sh occurr	ence using l	harsh acceleratio	n events		
•	VIF scores for the Base GLM model:											
MIN	_Speed_Diff	MAX	_Speed_Diff	MAX	_Event_Speed	STD_Eve	nt_Speed	Right_Exits	Outgoing_Lanes	Sideway		
	2.036474	0	1.853465		1.772092		1.77632	1.768705	3.948076	1.465606		
	VIF scores for the Random intercepts GLMER model:											
MIN	_Speed_Diff	MAX	_Speed_Diff	MAX	_Event_Speed	STD_Eve	nt_Speed	Right_Exits	Outgoing_Lanes	Sideway		
	1.903179		1.860567		1.868247		1.843664	2.180624	3.54389	1.219679		
	Exploring the relationship between unsafe traffic events and crash occurrence using harsh braking events											
					/IF scores for th	e Base GLI	M model:					
MIN	_Speed_Diff	MAX	_Speed_Diff	MAX	_Event_Speed	STD_Eve	nt_Speed	Right_Exits	Outgoing_Lanes	Sideway		
	2.162926		1.106514		1.813739		1.725633	2.031507	2.88136	1.404447		
			VI	score	es for the Rando	om intercep	ots GLMER	model:				
MIN	Sneed Diff	ΜΑΧ	Sneed Diff	MAX	Event Sneed	STD Eve	nt Sneed	Right Exits	Outgoing Lanes	Sideway		

1.991475

irf2024.irfofficial.org

2 036128

2.006422

0.024633

-0.042743

-0.089453 0.01127

0.225168 0.06359

0 568168 0 07843

STD Event Speed

Outgoing Lanes

Right Exit

0 '***' 0 001 '**' 0 01 '*' 0 05

.00207

0.04665

1.855

-7.936

3 541

0 91

7.243

2.10E-1

00039

35961

4.37E-1

1 96741

Results: Predictive Models & Insights

- Key Predictors: Speed differences, right exits, and side lanes significantly affect crash frequencies.
- **Model Performance:** GLMM outperformed GLM by considering random effects across junction types, providing a better understanding of crash occurrence patterns.
- VIF values (<5) indicate that the predictors are reasonably independent and do not distort the model's results
- Implications: Speed variability and junction design features are critical for safety improvements.
 Mesogeion is more prone to crashes compared to those of Vouliagmeni Avenue.

Limitations & Future Work

Limitations of Current Study:

- Small sample size of junctions may affect generalizability.
- Excluded factors like weather, demographics, and vehicle types can enhance applicability across different contexts.

Future Research Directions:

- Expand data collection to include broader sources, such as weather conditions and vehicle types.
- Conduct detailed behavior analysis to uncover additional risk factors.
- Incorporate machine learning models for improved risk prediction.

Paraskevi Koliou

Ph.D., Senior Research Engineer, NTUA

evi_koliou@mail.ntua.gr

irf2024.irfofficial.org

irf2024.irfofficial.org