Using KPIs to assess speeding ¹Laiou,A., ¹Yannis,G., ²Vadeby,A., ³ Cardoso,J., ⁴Van Schagen,I., ⁵Tutka,P., ⁶Kome,S., ⁷Wardenier,N., ⁴Van den Berghe,W. ¹National Technical University of Athens (NTUA), Greece ²Swedish National Road and Transport Research Institute (VTI), Sweden ³National Laboratory for Civil Engineering (LNEC), Portugal ⁴Institute for Road Safety Research (SWOV), Netherlands ⁵Warsaw University of Technology (WUT), Poland ⁶Sapienza University of Rome – Research Centre for Transport and Logistics (CTL), Italy ⁷VIAS Institute (VIAS), Belgium #### Key Performance Indicators (KPI) on speed - Trendline EU project aims to collect and analyze data to deliver road safety KPIs and for using them within road safety policies. - Alternative KPI related to speeding are proposed to serve as complimentary indicators to the basic speed KPI proposed in the EU road safety policy framework 2021-2030. - Additional speed KPIs were identified based on the international literature and after consultation with experts on the field. #### Proposed Speeding KPI - A. Percentage of vehicles travelling within the speed limit (minimum requirement) - B. Speed below which 85% of drivers are driving (V85) (additionally requested) - **C.** Average speed (including standard error and standard deviation) (additionally requested) - D. Percentage of vehicles travelling 10km/h or 20km/h or 30km/h faster than the speed limit (alternative speeding indicator) - E. Speed variation expressed by the difference between the lowest and highest 10% of speeds per road type or area type or speed limit or vehicle type (alternative speeding indicator). ### Requirements for calculating speeding KPI | ı | | Minimum requirement | Optional | |------|--------------------|--|---| | ı | Traffic conditions | Free-flow traffic | Non-free flow traffic data | | | Location | Random selection Representative of entire national road network Covering the whole geographical area of the country Measurements should not take place near fixed or mobile speed cameras Minimum traffic flow of at least 10 vehicles passing per hour Exclude locations where the speed limit was changed up to 6 months before the measurements or in between measurements and data analysis | Stratification by Regions | | ı | Road type | Motorways Rural roads (defined as roads outside built-up areas, but no motorways) Urban roads (defined as roads inside built-up areas) | Differentiate between single and dual lane
roads for rural and urban roads Differentiate between speed limits within
rural and urban roads | | ı | Vehicle type | Passenger cars | MotorcyclesVans and light trucksHeavy trucksBuses | | N | Time period | WeekdaysDaylight hoursSpring/autumn | WeekendNight-time hours | | | Weather | Good conditions | | | 71.0 | Sample size | Min 2000 observations Min 500 observations / road type Min 10 locations / road type The proportion of observations at each road type should be minimum 20% | | #### Discussion - The suggested speed KPIs include both traditional and novel options. - When combined, they allow for a more profound understanding of the actual situation on the road in terms of speed. - They can help better understand existing problems and select the most appropriate measures. - Costs of data collection may be considerable, therefore, existing data sources should be fully exploited. Requirements for field measurements should be adjusted accordingly. ## Thank you! Contacts: Prof.George Yannis, geyannis@central.ntua.gr Trendline project, https://trendlineproject.eu/, trendline@swov.nl