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ABSTRACT 1 
Accurate estimation of driving risk is essential for improving urban road safety and reducing crashes. 2 
Despite advancements, a significant gap exists in the real-time estimation of microscopic driving risk 3 
using advanced data technologies. This study presents an AI-based framework for assessing microscopic 4 
driving risk using the pNEUMA dataset, which comprises drone-collected traffic data from Panepistimiou 5 
Street, a five-lane urban arterial in Athens, Greece. Over five days, ten drones captured three hours of 6 
traffic data daily. The study aims to predict the probability of the ego vehicle encountering risk-related 7 
events such as speeding, lane changing, harsh braking, harsh acceleration, and short time-to-collision 8 
scenarios. The proposed methodology employs Long Short-Term Memory (LSTM) neural networks, both 9 
uni-directional and bi-directional, to analyze and predict driving risks based on the behavior of 10 
surrounding traffic. LSTM models showed high precision in identifying risk-related events, 11 
demonstrating the effectiveness of deep learning techniques in this context. Additionally, the results were 12 
aggregated at the road section level, allowing real-time risk estimation across different arterial 13 
subsections. This aggregation supports the development of real-time monitoring systems that provide 14 
actionable feedback to drivers, thereby enhancing road safety. The findings highlight the potential of 15 
integrating comprehensive data sources like drones to monitor and assess real-time driving behavior using 16 
advanced AI techniques. This approach offers granular insights into both micro and macroscopic driving 17 
risks. The study paves the way for future research into the application of similar methodologies in various 18 
urban settings, ultimately aiming to develop comprehensive, real-time road safety systems. 19 
 20 
Keywords: Traffic Safety; Driving Risk Prediction; Microscopic and Macroscopic Risk; Real-Time 21 
Monitoring; Drone Data; LSTM Models   22 
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INTRODUCTION 1 
Microscopic driving behavior analysis 2 

Road safety is a global concern with traffic crashes causing significant human, economic, and 3 
social costs. Approximately 1.19 million people lose their lives annually in road traffic crashes, and 20 to 4 
50 million suffer non-fatal injuries (1). Human error has proven a major cause of these crashes (2). 5 
Understanding and mitigating these errors can reduce the frequency and severity of road incidents. 6 

Traffic models are categorized into three major types according to the scope of analysis and the 7 
desired degree of granularity: macroscopic, mesoscopic, and microscopic. Macroscopic analysis examines 8 
overall traffic flow characteristics like vehicle density and speed. Microscopic analysis focuses on 9 
individual driver behaviors and vehicle interactions, using sub-models like car-following and lane-10 
changing to simulate traffic at the vehicle level. Mesoscopic analysis offers an intermediate perspective, 11 
capturing group behaviors without the full complexity of microscopic models. 12 

 13 
Microscopic and macroscopic driving risk estimation 14 

A comprehensive assessment of driving risks requires integrating both microscopic and 15 
macroscopic approaches. This holistic perspective enhances the precision of risk estimations. Microscopic 16 
analysis focuses on the actions and interactions of individual drivers and vehicles, crucial for 17 
understanding behaviors that affect overall traffic flow and safety. For example, frequent lane changes 18 
can disrupt traffic and increase collision risks (3). By simulating these behaviors, researchers can identify 19 
high-risk situations and develop targeted interventions (4). Advanced models using microscopic data can 20 
enhance the predictive capabilities of risk perception and warning systems, providing real-time alerts to 21 
high-risk drivers (4). 22 

In contrast, macroscopic risk estimation models analyze aggregated traffic data to identify 23 
broader trends and potential risks. These models are valuable for urban planning and large-scale traffic 24 
management, predicting how changes in traffic patterns or infrastructure impact safety. For instance, 25 
speed dispersion has been identified as a reliable macroscopic indicator for assessing road safety, as it 26 
correlates with microscopic risks such as potential collisions (5). Advances in data analysis and machine 27 
learning have led to sophisticated models that improve the prediction and mitigation of driving risks, thus 28 
enhancing overall traffic safety. 29 

Integrating microscopic and macroscopic approaches provides a comprehensive framework for 30 
understanding and mitigating road safety risks. Despite their importance, this integration has not been 31 
extensively explored, especially with groundbreaking data collection technologies like drones. 32 

 33 
Objectives 34 

To address the gaps in existing research, this study leverages drone data to monitor and predict 35 
driving risk on an urban arterial, contributing to the sparse literature in this domain. Through the 36 
implementation of advanced aerial data collection techniques, this research aims to obtain real-time, high-37 
resolution information on driving behavior and traffic patterns that are typically challenging to holistically 38 
observe via traditional ground-based methods. The primary objective of this research is the development 39 
of AI-based models that make use of microscopic data to provide estimations of traffic risk probability, 40 
both on a microscopic and macroscopic level. 41 

The paper is structured as follows: At the beginning, a thorough literature review is presented to 42 
highlight the gaps that this research aims to address. Subsequently, the research methodology is outlined, 43 
followed by a detailed description of the data and preprocessing steps. Finally, of the LSTM model on 44 
both microscopic and macroscopic driving risk probabilities are presented and discussed leading to 45 
significant conclusions. 46 

 47 
 48 
 49 
 50 
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BACKGROUND 1 
Microscopic Driving Behavior and Risk  2 

A comprehensive understanding of individual vehicle movements and driver interactions on the 3 
road is essential for assessing risks and developing interventions to improve road safety. Various 4 
scientific approaches and models have been employed to study microscopic driving behavior and risk. 5 

Car-following behavior, a fundamental aspect of microscopic driving analysis, has been 6 
extensively studied. Zatmeh-Kanj and Toledo (2021) focused on the impact of driver distractions, such as 7 
phone usage, on car-following behavior using a driving simulator. Their findings revealed that drivers 8 
showed reduced awareness of the preceding vehicle while distracted, leading to increased speed volatility 9 
and reduced safety margins (6). Additionally, Tan et al. (2022) developed a risk field model that 10 
integrates behavior theories like risk homeostasis theory and preview-follower theory to uniformly model 11 
driving behavior in different scenarios. This model was validated using naturalistic data in car-following 12 
scenarios, demonstrating its effectiveness in risk quantification and motion planning (7). 13 

In the realm of lane-changing behavior, Chen et al. (2021) conducted a comprehensive study on 14 
lane-changing risks by analyzing a vehicle trajectory dataset (HighD dataset). They proposed a lane-15 
changing risk index (LCRI) and revealed that risk levels were associated with variables such as gap 16 
distance, vehicle speed, and acceleration. This study provided an in-depth analysis of the factors 17 
influencing the risks associated with lane-changing, thus offering a tool for the development of effective 18 
traffic safety measures (8). Furthermore, Ali et al. (2020) examined the effects of connected environments 19 
on discretionary lane changing (DLC) decision-making. Their study revealed that drivers in connected 20 
environments exhibited larger spacing, longer DLC durations, and lower acceleration noise, indicating 21 
improved safety and situational awareness (9). 22 

Gap acceptance behavior at intersections, another critical component of microscopic driving 23 
behavior analysis, was examined by Li et al. (2020). They investigated the impact of mobile phone use on 24 
gap acceptance behavior at intersections using a driving simulator. While the distraction did not 25 
significantly affect gap acceptance decisions, it increased the time taken to complete intersection 26 
crossings, highlighting the complex interplay between driver distraction and gap acceptance behavior 27 
(10). 28 

 29 
Estimation of Real-time and/or Microscopic Crash Probability 30 

In the context of microscopic driving behavior analysis, numerous studies emphasize the 31 
estimation of real-time and microscopic crash probability, highlighting its critical role in enhancing traffic 32 
safety and enabling proactive traffic management. Haque et al. (2020) developed a model to estimate 33 
head-on crash probability using real-time motion trajectory data on two-lane undivided highways. Their 34 
model considered drivers’ overtaking decisions and time-to-collision, incorporating factors like vehicle 35 
speed and opposing vehicle characteristics, with buses having the highest crash probability (11). 36 

Elassad et al. (2020) developed real-time crash prediction models using driving simulator data 37 
that captured driver input responses, vehicle kinematics, and weather conditions. They employed machine 38 
learning techniques, demonstrating high prediction accuracy, especially under varying weather conditions 39 
(12). Moreover, Guo et al. (2021) developed a traffic crash risk prediction model based on risky driving 40 
behavior and traffic flow data. Combining detailed driver behavior data with machine learning 41 
techniques, they accurately predicted 84.48% of crashes, highlighting the potential of real-time behavior 42 
monitoring to improve road safety (13). 43 

 44 
Integrative LSTM Techniques for Mobility Prediction  45 

The integration of Long Short-Term Memory (LSTM) networks in mobility prediction has 46 
significantly advanced predictive modeling and data analysis capabilities. Mou et al. (2019) developed the 47 
Temporal Information Enhancing LSTM (T-LSTM), which integrates recurrent time labels to capture 48 
temporal dynamics more effectively, enhancing the accuracy of short-term traffic flow predictions (14). 49 
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Altché and de La Fortelle (2017) explored the application of LSTM networks for highway trajectory 1 
prediction, focusing on predicting driving behaviors in a macroscopic context (15). 2 

In public transportation, LSTM networks have been employed to predict passenger flow and 3 
enhance service planning. Pasini et al. (2020) used an LSTM encoder-predictor model for short-term train 4 
load forecasting, demonstrating its effectiveness in improving efficiency (16). Additionally, LSTM 5 
networks have been utilized for predicting road traffic crashes by analyzing historical accident data and 6 
various influencing factors. Li et al. (2019) developed an LSTM-CNN-based model to predict traffic 7 
crashes, incorporating features such as traffic flow characteristics, signal timing, and weather conditions, 8 
which proved effective in identifying patterns leading to crashes and enabling proactive safety measures 9 
(17). 10 

 11 
Application of LSTM in Microscopic Driving Behavior Analysis 12 

LSTM networks have also proven to be highly effective in analyzing time-series data, particularly 13 
in microscopic driving behavior analysis. Saleh et al. (2017) used smartphone sensor data with LSTM to 14 
classify driving behaviors, achieving high accuracy in categorizing normal, aggressive, and drowsy 15 
driving behaviors (18). Deo and Trivedi (2018) employed LSTMs to model and predict lane change 16 
intentions, showing that these models can accurately predict unsafe lane changes by analyzing sequences 17 
of vehicle movements (19). Jia et al. (2021) further used LSTM models to predict lane-changing behavior, 18 
effectively identifying patterns leading up to crash events (20). 19 

Moreover, LSTM networks have been used to model interactions between vehicles and 20 
pedestrians. Ridel et al. (2019) implemented an LSTM model to predict pedestrian trajectories, which is 21 
crucial for the development of advanced driver-assistance systems (ADAS) and autonomous driving 22 
technologies (21). Tselentis and Papadimitriou (2023) analyzed driving behavior through detailed time-23 
series data, focusing on speed and heart rate measurements to recognize patterns preceding risky driving 24 
scenarios (22). 25 

In conclusion, LSTM neural networks have emerged as powerful tools in the microscopic 26 
analysis of driving behavior. Their ability to model and predict sequential data makes them invaluable for 27 
improving the accuracy of driving behavior models, enhancing risk prediction, and ultimately 28 
contributing to safer and more efficient transportation systems. The diverse applications of LSTM in the 29 
field of road safety are strongly represented in the existing literature, from trajectory prediction to 30 
modeling complex interactions in driving environments. 31 
 32 
METHODS 33 
Theoretical Background of LSTM 34 

A long short-term memory (LSTM) network, a variant of recurrent neural networks (RNNs), has 35 
become essential for capturing and modeling intricate sequential patterns. LSTM networks address the 36 
vanishing gradient problem that often impairs traditional RNNs, enhancing performance in tasks 37 
involving long-term dependencies. Their ability to retain information over extended sequences makes 38 
them well-suited for modeling sequential data. 39 

 40 
LSTM networks are structured like a chain of repeating modules, each containing multiple gates 41 

that regulate information flow, enabling the system to effectively learn and retain dependencies in 42 
sequential data over long periods. Due to their advanced architecture, capable of capturing and retaining 43 
long-term dependencies, LSTMs have been successfully applied to a wide array of tasks, including 44 
activity recognition and language translation. Their precision in processing time-series data makes them 45 
particularly suitable for applications where understanding temporal dynamics is crucial. 46 

 47 
 48 
 49 

 50 
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A typical LSTM architecture includes three primary gates: 1 
 2 
1. Input Gate: Regulates information included in the memory cell. It has two components: an input gate 3 

layer using a sigmoid function to select values to be updated and a hyperbolic tangent (tanh) layer 4 
creating a vector of candidate values for potential inclusion in the cell state. 5 

2. Forget Gate: Determines which information from the cell state should be discarded using a sigmoid 6 
function where 1 means retention and 0 means forgetting. 7 

3. Output Gate: Controls information output from the cell state, employing a sigmoid activation 8 
function to filter relevant parts of the cell state at the current time step. This filtered state is then 9 
scaled using a tanh function, optimizing values for the next layer or output. 10 

 11 
Methodological approach for the estimation of microscopic event probability 12 

LSTM models were chosen for their proficiency in handling sequential data from driving metrics, 13 
capturing temporal dependencies critical for predicting driving risk events. Both uni-directional and bi-14 
directional LSTM configurations were tested. The uni-directional LSTM processes data in a single 15 
temporal direction, capturing sequential dependencies and trends in road user behavior. In contrast, the bi-16 
directional LSTM processes data in both forward and backward temporal directions, allowing it to 17 
consider the full context of traffic behavior both before and after each moment in time. This dual 18 
perspective can potentially enhance the model's understanding of complex driving patterns, thereby 19 
improving the accuracy of risk prediction. 20 

The LSTM was trained to estimate the microscopic event probability of the ego vehicle. Driving 21 
metrics considered as features of the LSTM model include metrics for the ego vehicle and surrounding 22 
vehicles: vehicle type, speed, longitudinal acceleration, distance traveled, relative distance, speed, and 23 
time to collision from the leading vehicle. These metrics were also considered for the four vehicles close 24 
to the ego vehicle: the vehicle in front, the vehicle following, and the two vehicles on the right and left. 25 
The target variables used to train the model were lane changing, speeding, harsh acceleration, and harsh 26 
braking. 27 

All LSTM models in this study were structured with at least two LSTM layers using the 'tanh' 28 
activation function and incorporating L2 regularization to mitigate overfitting. The models included 29 
dropout layers with a dropout rate of over 40% to further prevent overfitting. The output layer used a 30 
dense layer with a 'sigmoid' activation function, suitable for binary classification tasks. The models were 31 
trained with a batch size of 32 for up to 400 epochs, with early stopping when validation loss did not 32 
improve. Different model configurations were tested by varying the number of LSTM layers, their 33 
direction (unidirectional or bidirectional), the number of neurons, dropout rate, and optimizer type, such 34 
as Adam and SGD with different learning rates and momentum settings. 35 

Figure 1 illustrates the driving metrics of the five vehicles considered in the LSTM model 36 
training. The ego vehicle is shown in green, while surrounding vehicles are in black. Figure 1 also shows 37 
how spatiotemporal risk is estimated on a road segment level through the aggregation of the microscopic 38 
risk estimated using the LSTM model. This approach considers both space and time dimensions, 39 
providing a time evolution of road risk in a specific cross-section and a risk snapshot for a specific road 40 
segment. 41 
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  1 
 2 
Figure 1 The ego vehicle (green color) and the surrounding vehicles whose metrics are considered 3 
in the LSTM model trained and tested herein. (b) Right figure illustrates how risk can be 4 
aggregated in space and time to assess spatiotemporal risk of a road 5 

 6 
The length of the time-series before the event used to predict the risky event is 10 seconds. The 7 

event flag marks the occurrence of an event within a rolling window of 2 seconds. There is a 1-second 8 
gap between the end of the time-series features and the event flag, considered as the driver's reaction time. 9 
As shown in Figure 2, the LSTM model is then trained to predict the probability of the ego vehicle 10 
participating in a risky event within the future window of 1 to 3 seconds ahead, skipping the future 11 
window of 0 to 1 second ahead of the prediction. 12 

 13 

  14 
 15 
Figure 2 Past time-series window X where driving metrics are recorded and future time-series 16 
window Z where an event may occur. Window Y is not considered 17 

 18 
Where in Figure 2: 19 
X: 10-second window of driving metrics. 20 
Y: 1-second window before the event occurrence, not considered in prediction. 21 
Z: 2-second window where event occurrence is flagged and used as a target variable. 22 
 23 

The LSTM model is trained to predict the probability of the ego vehicle participating in an event 24 
within window Z, using driving data from the five vehicles within window X. The lengths of the time-25 
series windows were chosen after trial and error but require further exploration to maximize model 26 
predictability. 27 

The input LSTM array has a shape of (250, 35, 69505), with X being 250 past observations, Y 28 
being 35 features, and Z being 69505 time-series snapshots. The target time-series shape is (1, 69505), 29 
representing whether an event occurred within the 2-second window. The train and test sets were split 30 
80% and 20%, respectively. The study aims to provide short-term predictions of the probability of a 31 
vehicle being involved in risky driving events based on the characteristics of the vehicle and surrounding 32 
vehicles. The rolling basis calculation of time-series windows creates input and target arrays for LSTM 33 
model training. 34 
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DATA 1 
Data Description 2 

The pNEUMA dataset (23, 24) was developed from a data collection experiment conducted in 3 
Athens, Greece, in 2018. Over five days, a swarm of ten drones captured real-time traffic data for three 4 
hours during peak morning hours. As shown in Figure 3, the drones covered a 1.3 km² area with over 100 5 
kilometers of roadways and nearly 100 intersections, capturing nearly half a million vehicle trajectories. 6 
This data included vehicle speed, acceleration, and position with a data collection frequency of 25Hz, 7 
(e.g., captured every 0.04 seconds). 8 

 9 

  10 
 11 
Figure 3 Blocks covered by each drone of the swarm 12 

 13 
This study focused on Panepistimiou Street, a five-lane urban arterial in Athens (Figure 4), due 14 

to its volume of traffic and frequency of traffic events. The studied blocks were IDs: 2, 3, and 5. 15 
 16 

  17 
 18 
Figure 4 Study area: Panepistimiou Street 19 

 20 
The pNEUMA dataset organized each row to detail a single vehicle’s data. Initial columns 21 

provide the vehicle’s trajectory, including trackID, vehicle type, distance traveled, and average speed. 22 
Following columns repeat data for different timeframes, including latitude, longitude, speed, longitudinal 23 
acceleration, lateral acceleration, and time. 24 

 25 
Data Pre-Processing 26 

 The dataset was restructured to ensure that each column of time data corresponded to 0.04 27 
seconds intervals. Furthermore, Panepistimiou lanes were delineated as polygons using Google Earth 28 
coordinates for accurate vehicle position tracking. Based on the pNEUMA dataset, three data frames were 29 
developed: (a) individual vehicle metrics, (b) lane-specific traffic metrics, and (c) traffic events. 30 
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The first dataframe aggregated data for vehicle pairs (following and leading vehicles) and risk 1 
metrics, including track ID, position, type, speed, longitudinal acceleration, and lane-polygon. The Time-2 
to-Collision (TTC) metric (25) was also calculated (Equation 1). 3 

 4 
 5 

TTCi = 
𝑋𝑖−1(𝑡)− 𝑋𝑖(𝑡)− 𝑙𝑖

𝑋̇𝑖 (𝑡) − 𝑋̇𝑖−1(𝑡)
     ∀𝑋̇𝑖(𝑡) >  𝑋̇(𝑖−1)(𝑡),        (1) 6 

 7 

The second dataframe captured traffic metrics for each polygon at every 0.04-second timeframe, 8 
including (i) average vehicle speed (Equation 2), (ii) total number of vehicles, (iii) density (vehicles/km) 9 
(Equation 3), and (iv) traffic flow (vehicles per hour) (Equation 4).  10 

 11 

vavg = 
∑ 𝑣𝑖

𝑛
𝑖=1

𝑛
,        (2) 12 

where vavg represents the average speed (km/h), vi speed of the i-th vehicle (km/h) and n the total number 13 
of vehicles observed. 14 
 15 

k = 
𝑛

𝐿
,        (3)  16 

where n represents the total number of vehicles observed and L the length of the road segment (km). 17 
 18 
q = 𝑘 ∙ 𝑣𝑎𝑣𝑔,        (4) 19 

where k represents the density (vehicles/km) and vavg the average speed (km/h). 20 
 21 

The third dataframe identified risky traffic events, setting thresholds for safety indicators such as 22 
TTC, harsh acceleration, harsh braking, and speeding. The TTC threshold was set at 1.5 seconds (26), 23 
harsh braking (27) and acceleration at 0.5g (4.9 m/s²) (28), and speeding incidents at 10km/h above the 24 
speed limit. Lane change detection flagged vehicles in different polygons between two consecutive time 25 
frames. 26 

In the final phase, the three dataframes were integrated into a unified dataset, aligning each entry 27 
with 0.04-second intervals, creating a cohesive time-series format essential for advanced predictive model 28 
analysis. 29 
 30 
RESULTS 31 
Microscopic driving risk probability 32 

Table 1 outlines various LSTM model configurations tested for microscopic risk prediction 33 
expressed through speeding. Each configuration is detailed with respect to the direction of the LSTM 34 
(uni-directional or bi-directional), the number of LSTM layers, dropout percentage, the number of 35 
neurons in each LSTM layer, type of optimizer, learning rate, batch size, and the number of epochs used 36 
for training. Specifically, two uni-directional models were tested with different layer and neuron 37 
configurations, all optimized using the Adam optimizer with a learning rate of 0.0001 and trained for 50 38 
epochs. The majority of the configurations are bi-directional LSTMs, varying in the number of layers (2 39 
or 3), dropout rates (40% or 50%), and neuron counts (ranging from 16 to 128 in various layers). These 40 
bi-directional models employ either the Adam or SGD optimizer, with the SGD variants using 41 
momentum, decay, and in some cases, Nesterov acceleration. Learning rates for SGD models vary 42 
between 0.001 and 0.0001, with training epochs extending up to 400 for certain configurations. This 43 
diverse set of configurations aims to identify the optimal architecture and training parameters for 44 
accurately predicting driving risk at a microscopic level. Other configurations were also tested, for 45 
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instance uni-directional models and models with lower dropout percentages, which demonstrated a very 1 
poor performance. Models trained for the prediction of lane changing, harsh acceleration, and harsh 2 
braking showed poor performance as well, which is mainly attributed to the low number of events 3 
recorded during the drone videos processed and this is the reason why the results of these models are not 4 
presented in this section.   5 

 6 
TABLE 1 Configuration of the LSTM tested for the prediction of speeding events 7 
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1 Uni 3 40% 64 32 32 Adam 1E-4 64 50 

2 Uni 2 50% 32 16 - Adam 1E-4 64 50 

3 Bi 2 50% 32 16 - Adam 1E-4 64 50 

4 Bi 2 50% 64 32 - Adam 1E-4 64 100 

5 Bi 3 50% 32 16 16 Adam 1E-4 64 50 

6 Bi 3 50% 64 32 32 Adam 1E-4 64 50 

7 Bi 3 40% 128 64 64 Adam 5E-4 64 50 

8 Bi 3 40% 64 32 32 

SGD (momentum=0.4, 

decay=0.0001, 

nesterov=False) 

1E-3 64 60 

9 Bi 3 40% 32 16 16 

SGD (momentum=0.6, 

decay=0.00001, 

nesterov=False) 

1E-4 64 60 

10 Bi 2 40% 64 32 - 

SGD (momentum=0.6, 

decay=0.00001, 

nesterov=True) 

1E-4 64 60 

11 Bi 2 40% 64 32 - 

SGD (momentum=0.5, 

decay=0.0005, 

nesterov=True) 

1E-3 64 60 

12 Bi 3 40% 128 64 64 

SGD (momentum=0.5, 

decay=0.0005, 

nesterov=True) 

1E-4 256 200 

13 Bi 3 40% 32 16 16 

SGD (momentum=0.5, 

decay=0.0005, 

nesterov=True) 

1E-4 32 400 

 8 

The performance of the LSTM models was evaluated using the key metrics of accuracy, 9 
precision, recall, and the Area Under the Curve (AUC). These performance metrics provide a 10 
comprehensive assessment of the model's ability to accurately predict driving risk events, ensuring a 11 
robust evaluation of the model's effectiveness in various scenarios. This systematic evaluation allows for 12 
the identification of the most suitable LSTM configuration and temporal parameters for real-time driving 13 
risk assessment. Table 2 presents the performance metrics of various uni-directional and bi-directional 14 
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LSTM models trained to predict speeding events. The bi-directional models generally outperformed the 1 
uni-directional models in terms of precision, likely due to their ability to consider future states. 2 

For example, Model 7, a bi-directional LSTM with three layers and 40% dropout, achieved the 3 
highest precision of 94%. However, this model, like others, exhibited a relatively low recall rate of 18%, 4 
indicating that while the model is effective at correctly identifying speeding events when they occur (high 5 
precision), it struggles to detect all occurrences of such events (moderate recall). In contrast, Model 1, a 6 
uni-directional LSTM with three layers and 40% dropout, showed a slightly lower precision of 84% and a 7 
slightly higher recall of 22%. The performance metrics of the bi-directional LSTM models for predicting 8 
speeding events reveal several important insights. 9 

Models using the Adam optimizer consistently demonstrated higher precision and recall 10 
compared to those using the SGD optimizer. For instance, Model 6, a bi-directional LSTM with three 11 
layers and an Adam optimizer, achieved a recall rate of 27% and a precision of 86%, reflecting a 12 
relatively better balance between identifying and correctly predicting a reasonable number of speeding 13 
events. This model also demonstrated the highest binary accuracy of 86% among all LSTM models. This 14 
suggests that increasing the number of neurons in each layer, up to a certain point, can enhance the 15 
model's ability to learn from the data without overfitting. On the other hand, models with higher 16 
complexity, such as Model 12 with three layers and 128 neurons in the first LSTM layer, showed 17 
significant increases in training time without corresponding improvements in prediction accuracy or 18 
recall. This indicates a point of diminishing returns in model complexity, where additional layers and 19 
neurons do not necessarily enhance performance but rather contribute to overfitting, as seen in models 20 
with high precision but low recall. 21 
 22 

TABLE 2 Performance metrics for the LSTM models predicting speeding events 23 

Model ID Binary 

accuracy 

Precision Recall Area Under the Curve 

(AUC) 

1 84% 76% 22% 75% 

2 83% 87% 10% 71% 

3 84% 89% 17% 75% 

4 85% 85% 25% 77% 

5 84% 79% 18% 74% 

6 86% 86% 27% 77% 

7 85% 94% 18% 76% 

8 82% 52% 27% 69% 

9 81% 37% 4% 64% 

10 81% 100% 0% 66% 

11 82% 76% 4% 68% 

12 82% 72% 2% 65% 

13 82% 68% 3% 66% 

 24 
Models using the SGD optimizer showed varied performance. Model 10, which uses a bi-25 

directional LSTM with two layers and 64 neurons in the first layer, achieved a perfect precision of 100% 26 
but an extremely low recall of 0.1%. This indicates a severe case of overfitting where the model correctly 27 
identifies very few instances, but those it identifies are almost always correct. The lower AUC values in 28 
SGD-optimized models, such as 64% for Model 9 and 65% for Model 12, further suggest that these 29 
models are less reliable in distinguishing between positive and negative classes across different threshold 30 
settings compared to their Adam-optimized counterparts. This highlights the need for more sophisticated 31 
regularization techniques or the exploration of other optimizers to improve the recall rates and overall 32 
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robustness of these models. Model 7 is picked for the macroscopic risk estimation in the following 1 
section, as the model showing the highest accuracy. 2 

 3 
Macroscopic driving risk probability 4 

In order to provide a comprehensive assessment of driving risk at a road section level, the 5 
microscopic driving risk probabilities predicted by the LSTM models were aggregated. This aggregation 6 
process involved collating the risk probabilities of individual vehicles and their interactions within 7 
specific road segments over time. This aggregation was made for a short time period of 102 seconds. By 8 
doing so, the detailed microscopic predictions were transformed into a broader macroscopic perspective, 9 
offering valuable insights into the overall risk profile of different road sections. As explained in the 10 
previous section, Model 7 was used to initially estimate microscopic risk expressed as speeding events 11 
occurring at the vehicle level and subsequently aggregated this risk at the road section level. This 12 
estimation should be extended in the future to account for various events and situations that express traffic 13 
risk, such as lane changing, harsh acceleration, and harsh braking, and should also represent the traffic 14 
risk of all individual road users within the section. 15 

To achieve this aggregation, the road was divided into discrete segments, and the predicted risk 16 
probabilities for each vehicle within these segments were collected over the specified time intervals. 17 
These probabilities were then summed to generate a risk score for each segment, reflecting the overall 18 
likelihood of risky events occurring within that area. The resulting aggregated risk data, normalized based 19 
on the maximum risk probability observed, are visualized in Figure 5, highlighting the variation in 20 
driving risk for a specific road section across time. This visualization shows the dynamic nature of traffic 21 
risk when focusing on a road section of the network. Future research should enrich this analysis by 22 
studying multiple road sections of the road network at the same time to assess relative risk within the 23 
network. This would not only underscore the areas with higher risk but would also provide a dynamic 24 
view of how risk evolves over time and space, enabling more targeted, prioritized and effective traffic 25 
safety interventions. 26 

  27 
 28 
Figure 5 Evolution of aggregated macroscopic risk in time for a specific section of Panepistimiou 29 
street for 100 seconds 30 

 31 
DISCUSSION 32 

The performance of the uni-directional and bi-directional LSTM models was evaluated using 33 
several key metrics, revealing notable differences between the two configurations. The bi-directional 34 
LSTM models demonstrated slightly better performance compared to their uni-directional counterparts, 35 
likely due to their capacity to consider future states. This ability allows bi-directional models to capture 36 
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more context around the event, leading to a more accurate prediction of risky driving behaviors. Both 1 
model types exhibited tendencies to overfit, as evidenced by high precision and recall during testing 2 
phases. However, the implementation of neuron dropout effectively mitigated rapid overfitting, ensuring 3 
that the models maintained generalizability to new data. The high validation precision of the LSTM 4 
models indicates their capability to correctly distinguish between risky and non-risky event situations, 5 
demonstrating their potential utility in real-world driving risk assessments. 6 

Despite the high precision, the models showed a relatively low recall on the validation dataset, 7 
highlighting a significant limitation and a need for further refinement to improve the identification of 8 
actual risky events. Overall, while the bi-directional LSTM models show promise due to their slightly 9 
better precision, both types of LSTM models require further refinement to improve recall rates. The low 10 
recall suggests that while the models are adept at identifying true non-risky events, they struggle to detect 11 
a substantial portion of actual risky events. This inefficiency could reduce the model's practical 12 
effectiveness in real-time applications where the identification of most risky events is critical for 13 
preventing incidents. 14 

The findings suggest that while LSTM models are a valuable tool for driving risk prediction, 15 
careful attention must be paid to model design and evaluation metrics to ensure they can be effectively 16 
deployed in real-world scenarios. Expanding the methodology to different urban settings will help 17 
generalize the findings and validate the model's robustness. Integrating drone data with other sources, 18 
such as vehicle, road, and environmental data, could provide a more comprehensive risk assessment and 19 
enhance the model's predictive capabilities. 20 

Increasing the complexity of the models, by adding more neurons and layers, did not yield a 21 
corresponding improvement in predictability. Instead, these more complex models resulted in 22 
significantly longer training times without substantial gains in performance. This indicates that there is a 23 
limit to the benefits of increasing model complexity for this specific application and emphasizes the 24 
importance of balancing model complexity with practical considerations such as training time and 25 
computational resources. Overall, while the bi-directional LSTM models show promise due to their 26 
slightly better precision, both types of LSTM models require further refinement to improve recall rates. 27 
Future work could explore alternative architectures or additional features that might enhance the model’s 28 
ability to identify risky events more accurately. Additionally, strategies to address overfitting, such as 29 
more sophisticated regularization techniques or data augmentation, could be beneficial. The findings 30 
suggest that while LSTM models are a valuable tool for driving risk prediction, careful attention must be 31 
paid to model design and evaluation metrics to ensure they can be effectively deployed in real-world 32 
scenarios. 33 

In the future, these models should be extended to account for various road users, including 34 
pedestrians, cyclists, e-scooters, and other vulnerable road users, and incorporate their specific metrics 35 
such as trajectories, distraction, interactions, and maneuvers. Additionally, factors related to the road itself 36 
(e.g., road geometry, infrastructure, road defects, traffic lights phasing), vehicles (e.g., age, type, engine 37 
capacity, fleet characteristics), traffic conditions (e.g., volume, speed, density, travel time), and the 38 
environment (e.g., weather, time of day, daylight) should be considered. Integrating crash data, including 39 
real-time crashes, high-risk collisions, and historical crash records, will provide a more comprehensive 40 
risk assessment. By studying these elements both individually and in combination, future research can 41 
better understand how the interaction of all road users affects traffic risk and identify which factors 42 
contribute most significantly to increased traffic risk. This holistic approach will be essential in 43 
developing more effective and inclusive traffic safety measures. 44 

Comparison with past literature is not possible because, to the best of our knowledge, no previous 45 
studies have employed a similar methodology for driving risk prediction using drone-collected data and 46 
LSTM models. This novel approach sets a precedent in the field, highlighting the innovative nature of our 47 
research. Consequently, our findings represent a pioneering step in driving risk assessment. While 48 
traditional studies rely on static sensors or vehicular data, our drone-based approach offers a broader and 49 
more dynamic perspective, capturing intricate traffic patterns and behaviors. This method allows for 50 
comprehensive monitoring of multiple vehicles and their interactions in real-time, providing a richer 51 



Tselentis D.I. et al.  

14 
 

dataset for analysis. The versatility and mobility of drones enable the collection of high-resolution traffic 1 
data over extensive urban areas, enhancing the accuracy and applicability of the driving risk predictions.  2 
 3 
CONCLUSIONS 4 

This research underscores the potential of using AI modeling to predict driving risk in real-time 5 
and ultimately enhance urban traffic safety. The LSTM-based approach proved effective in terms of 6 
precisely predicting risky driving events in both microscopic and macroscopic level, demonstrating its 7 
utility in real-time risk monitoring systems. By leveraging drone-collected traffic data, this study provides 8 
a comprehensive methodological framework for estimating traffic risk, contributing to safer driving 9 
environments. One of the main contributions of this paper is the introduction of a methodological 10 
approach for the estimation of microscopic and macroscopic traffic risk. The comparison of uni-11 
directional and bi-directional LSTM models revealed that bi-directional models offer slightly better 12 
precision, likely due to their ability to consider future states. Despite some overfitting tendencies, the 13 
models demonstrated high validation precision, indicating their capacity to accurately distinguish between 14 
risky and non-risky events. 15 

Future work could explore alternative architectures or additional features that might enhance the 16 
model’s ability to identify risky events more accurately. Additionally, strategies to address overfitting, 17 
such as more sophisticated regularization techniques or data augmentation, could be beneficial. Findings 18 
suggest that LSTM models can be potentially valuable in driving risk prediction but need further 19 
refinement to ensure effective deployment in real-world scenarios. Moreover, future research should 20 
focus on improving the accuracy of driving event predictions by exploring different models and 21 
optimizing the lengths of the time-series windows used in model training. Training the models into 22 
additional urban settings will improve robustness and assist generalization of results. It would also be 23 
highly recommended to integrate the drone data with other sources related to traffic, road, infrastructure, 24 
and environment, as well as from other road users such as AVs, pedestrians, cyclists and scooters. 25 
Collision data would also be of significant value to improve model performance. This could provide a 26 
more comprehensive risk assessment and enhance the model's predictive capabilities. 27 

The methodology and results of this study have significant potential for real-time applications 28 
aimed at enhancing traffic safety. The aggregated risk data can be integrated into real-time monitoring 29 
systems to provide immediate feedback to drivers, thereby potentially reducing traffic incidents. By 30 
aggregating results on a road section level, this approach enhances the practical application of the data by 31 
offering real-time detection of risk profiles for different road segments as well as real-time detection of 32 
risk hotspots in the road network. This real-time risk estimation can be used to develop and test driver 33 
feedback systems that alert drivers to potential dangers, enabling them to take preventive actions 34 
promptly. Additionally, a network-wide system could be developed to monitor and assess the real-time 35 
evolution of driving risk across an entire urban area, providing valuable insights for traffic management 36 
and control strategies. Such applications could lead to more proactive traffic safety measures, ultimately 37 
contributing to safer road environments. 38 

In summary, this study represents a pioneering step in driving risk assessment using AI and drone 39 
data. The findings highlight the potential of this approach to contribute significantly to real-time traffic 40 
safety measures, paving the way for more proactive and informed traffic management strategies in urban 41 
environments. 42 
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