
This study utilizes drone-based data to capture high-resolution

driver behavior and traffic patterns on an urban arterial.

Leveraging these insights, AI-driven models are developed to

estimate traffic risk probabilities at both microscopic and

macroscopic levels, addressing research gaps and offering a

more holistic, real-time perspective on road safety
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Accurate prediction of driving risks is crucial for urban road

safety. With traffic crashes resulting in significant human and

economic losses globally, real-time risk estimation is vital.

Traffic modeling is approached at three levels: macroscopic

(overall flow), microscopic (individual driver-vehicle behaviors),

and mesoscopic (group interactions). Microscopic models,

involving car-following and lane-changing, help identify and

mitigate risky behaviors like frequent lane changes.

Macroscopic models use aggregated data to reveal broader

safety trends, such as speed dispersion correlating with

collision risks. Integrating these two scales offers a more

comprehensive understanding of road safety, yet such

integration, especially using new technologies like drones,

remains underexplored

Figure 1: Blocks covered by each drone of the swarm

❖ LSTM-based modeling shows strong potential for real-time driving risk prediction, demonstrating effectiveness at

both microscopic and macroscopic levels when combined with drone-collected data.

❖ Bi-directional LSTM models offer slightly better precision than uni-directional models due to their ability to capture

future states, but both configurations still struggle with low recall, indicating difficulty in identifying all true risky events.

❖ Drone-collected traffic data provides a richer, more dynamic perspective compared to traditional static or vehicular

data, enabling more comprehensive risk assessments.

❖ Further refinement and integration of additional data sources - including traffic, infrastructure, environmental factors,

and other road users - can enhance accuracy and generalizability.
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Objective

The pNEUMA dataset, collected in Athens, Greece (2018),

consists of high-frequency (25Hz) vehicle trajectory data

captured by ten drones over five days. As shown in Figure 1, the

drones covered a 1.3 km² area with over 100 kilometers of

roadways and nearly 100 intersections, capturing nearly half a

million vehicle trajectories. This study focused on Panepistimiou

Street, a five-lane urban arterial in Athens (i.e., Block 2,3 and 5).
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❑ Long Short-Term Memory (LSTM) networks were employed to predict driving risk by modeling sequential data.

Both uni-directional and bi-directional LSTMs were explored, where the former processed data in a single

temporal direction, and the latter considered both forward and backward temporal sequences to enhance the

contextual understanding of risky events.

❑ The LSTM models featured a robust architecture with at least two layers using 'tanh' activation functions, L2

regularization, and dropout rates over 40% to prevent overfitting. The output layer used a sigmoid activation

function for binary classification. Models were trained with a batch size of 32 for up to 400 epochs, applying early

stopping to halt training when validation loss stopped improving. Configurations were optimized by varying layers,

dropout rates, neurons, and optimizers (Adam and SGD).

❑ The LSTM analyzed driving data through a 10-second observation window (X), a 1-second reaction window (Y)

for driver response exclusion, and a 2-second prediction window (Z) to flag risky events. As shown in Figure 3,

the model used sequential data from the observation window (X) to predict events in the prediction window (Z).

The input data shape was (250, 35, 69505), representing observations, features, and snapshots.

Conclusions

LSTM models were developed to predict

microscopic driving risks, specifically focusing

on speeding events. Models included uni-

and bi-directional configurations with

varying layers (2-3), dropout rates (40-50%),

neurons (16-128), and optimizers (Adam and

SGD). Uni-directional models processed

sequences in a single direction, while bi-

directional models captured both past and

future contexts, offering potentially richer

insights and improved accuracy.

Bi-directional models were expected to

perform better by leveraging temporal

dependencies in both directions, which is

critical for predicting sequential behaviors

such as harsh braking or speed changes

based on both past and future contexts. As

shown in Table 1, the models were designed

with varying complexity to evaluate their

effectiveness in capturing these

dependencies.

The performance of the LSTM models was evaluated using

accuracy, precision, recall, and AUC. These metrics provided a

comprehensive assessment of the models' ability to predict

driving risk events, ensuring robust evaluation for real-time

assessments.

Table 2 summarizes the performance metrics for the tested LSTM

models. Bi-directional models generally outperformed uni-

directional models in terms of precision, likely due to their

ability to consider future states.

For example, Model 7, a bi-directional LSTM with three layers and

40% dropout, achieved the highest precision of 94% but had a

lower recall of 18%, indicating it was highly accurate when

identifying speeding events but struggled to detect all

occurrences. Model 1, a uni-directional LSTM, had a slightly lower

precision of 76% and a slightly higher recall of 22%, showing a

trade-off between precision and recall.

Microscopic driving risk probabilities predicted by

LSTM models were aggregated to assess risk at the

road section level. Risk probabilities of individual

vehicles and their interactions within specific road

segments were analyzed over 102-second intervals.

This transformed microscopic predictions into a

macroscopic view, offering insights into overall risk

profiles.

Model 7 initially estimated microscopic risk, focusing

on speeding events at the vehicle level, and

aggregated this data at the road section level. Future

research should expand this approach to include lane

changes, harsh acceleration, and braking, considering

all road users.

Road segments were divided, and risk probabilities

were summed over time to generate segment-specific

scores. Aggregated risk data, normalized and

visualized in Figure 4, highlight the variation in driving

risk for a specific road section across time

The dataset was

restructured into 0.04s

intervals, and

Panepistimiou lanes were

mapped as polygons for

accurate positioning.

Three dataframes were

developed and merged

into a unified dataframe:

❑ The models utilized driving metrics such as vehicle type,

speed, longitudinal acceleration, relative distance, and

time-to-collision for the ego vehicle and its closest

neighbors. Target variables included lane changing,

speeding, harsh acceleration, and harsh braking. Figure

2 depicts the ego vehicle (green) and surrounding vehicles

(black), whose data were used to estimate microscopic

risks.

Figure 2: Ego Vehicle and Spatiotemporal Risk Aggregation

Figure 3: Time-Series Windows for Driving Metrics and Event Prediction
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1 Uni 3 40% 64 32 32 Adam 1E-4 64 50

2 Uni 2 50% 32 16 - Adam 1E-4 64 50

3 Bi 2 50% 32 16 - Adam 1E-4 64 50

4 Bi 2 50% 64 32 - Adam 1E-4 64 100

5 Bi 3 50% 32 16 16 Adam 1E-4 64 50

6 Bi 3 50% 64 32 32 Adam 1E-4 64 50

7 Bi 3 40% 128 64 64 Adam 5E-4 64 50

8 Bi 3 40% 64 32 32

SGD 

(momentum=0.4, 

decay=0.0001, 

nesterov=False)

1E-3 64 60

9 Bi 3 40% 32 16 16

SGD 

(momentum=0.6, 

decay=0.00001, 

nesterov=False)

1E-4 64 60

10 Bi 2 40% 64 32 -

SGD 

(momentum=0.6, 

decay=0.00001, 

nesterov=True)

1E-4 64 60

11 Bi 2 40% 64 32 -

SGD 

(momentum=0.5, 

decay=0.0005, 

nesterov=True)

1E-3 64 60

12 Bi 3 40% 128 64 64

SGD 

(momentum=0.5, 

decay=0.0005, 

nesterov=True)

1E-4 256 200

13 Bi 3 40% 32 16 16

SGD 

(momentum=0.5, 

decay=0.0005, 

nesterov=True)

1E-4 32 400

Model ID
Binary 

accuracy
Precision Recall

Area Under the Curve 

(AUC)

1 84% 76% 22% 75%

2 83% 87% 10% 71%

3 84% 89% 17% 75%

4 85% 85% 25% 77%

5 84% 79% 18% 74%

6 86% 86% 27% 77%

7 85% 94% 18% 76%

8 82% 52% 27% 69%

9 81% 37% 4% 64%

10 81% 100% 0% 66%

11 82% 76% 4% 68%

12 82% 72% 2% 65%

13 82% 68% 3% 66%

Table 1: Configuration of the LSTM tested for the prediction of speeding events

Table 2: Performance metrics for the LSTM models

Macroscopic Driving Risk Probability

Microscopic Risk Prediction: Performance Metrics

Figure 3: Evolution of aggregated macroscopic risk in time for a specific section 

of Panepistimiou street for 100 seconds
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