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ABSTRACT 1 
A wide range of variables affect road safety, including the driver's state, environment, and traffic 2 
conditions. The aim of the current study was twofold; a) the evaluation of the impact of various indicators 3 
on predicting Safety Tolerance Zone (STZ) and b) the development of a deep learning model for 4 
identifying dangerous driving. In order to achieve these objectives, a naturalistic driving experiment was 5 
implemented and data from a representative sample of 50 Belgian car drivers were collected and 6 
analysed. The impact of the features on the estimation of STZ was performed based on the XGBoost 7 
algorithm. Key features such as headway, forward collision warning indicator, and distance traveled were 8 
found to significantly affect the prediction of STZ levels. Subsequently, a Long Short-Term Memory 9 
(LSTM) model was developed for real time data prediction, leveraging its strength in handling sequential 10 
data and temporal dependencies. The results demonstrated that the LSTM model achieved a 71% 11 
accuracy rate in identifying dangerous driving behaviors, underscoring the potential of this approach for 12 
enhancing road safety. The analysis highlighted the critical importance of the identified features, 13 
suggesting that the combination of XGBoost for feature selection and LSTM for real-time prediction 14 
provides a robust framework for real-time intervention and support systems. This integrated method 15 
offers significant promise for reducing road accidents and improving overall traffic safety by enabling 16 
timely and accurate identification of risky driving behaviors. 17 
 18 
Keywords: driving behaviour, i-DREAMS project, Safety Tolerance Zone, XGBoost, Long Short-19 
Memory Network   20 
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INTRODUCTION 1 
According to the World Health Organization (WHO), every year 1.19 million lives are lost on 2 

road crashes, with millions more experiencing severe injuries and enduring long-term health 3 
consequences (World Health Organization, 2023). Road crashes rank as the 12th leading cause of death 4 
for people of all ages, with the most pronounced impact observed among individuals aged 5 to 29 years, 5 
for whom it stands as the foremost cause of death (1). 6 

Numerous factors contribute to road safety, encompassing the driver's condition, environmental 7 
elements, and traffic situations (2). Despite advancements in technology and infrastructure, human error 8 
remains a significant factor in traffic crashes (3, 4). However, the ongoing development of autonomous 9 
vehicles holds promise for improving road safety by minimizing reliance on human drivers (5). Intelligent 10 
Transportation Systems (ITS) for monitoring driving behaviour, incorporating real-time interventions, 11 
have demonstrated notable effectiveness in enhancing road safety (6). Moreover, the convergence of AI-12 
driven technologies and traditional safety measures marks a transformative era in road safety 13 
management. Combining the advantages of autonomous vehicles and monitoring systems has significant 14 
potential for reducing the impact of human error and fostering a safer road environment for all users. 15 

To date, significant number of studies explore the risk assessment, recognition and classification 16 
of driving behaviour and profiling through machine learning techniques and clustering algorithms. To 17 
begin with, Chen et al. (2023) (7) implemented different feature extraction methods to identify driver’s 18 
characteristics and improve the accuracy of driving behaviour modelling. Other studies have introduced 19 
deep learning techniques to identify dangerous driving patterns based on factors such as speed, headway, 20 
or time to collision (8, 9). Ghandour et al. (2021) (10) applied and compared four machine learning 21 
classification methods to identify drivers’ behaviour and distraction situations based on real data 22 
corresponding to different behaviours (i.e., normal, drowsy, and aggressive). These studies collectively 23 
underscore the crucial role of advanced data analytics in preemptively identifying and mitigating risk 24 
factors associated with driving behavior. By leveraging sophisticated algorithms and large datasets, 25 
researchers can uncover nuanced patterns and correlations that were previously undetectable, thus paving 26 
the way for more effective and targeted safety interventions. 27 

The overall objective of the European H2020 i-DREAMS project is to address to tackle these 28 
challenges by establishing, developing, testing, and validating a ‘Safety Tolerance Zone’ (STZ) to ensure 29 
safe driving behaviour. The i-DREAMS aims to assess the appropriate level within the STZ continuously, 30 
considering risk factors associated with task complexity (e.g., traffic conditions and weather) and coping 31 
capacity (e.g., driver’s mental state, driving behaviour, and vehicle status). Interventions are then 32 
implemented to keep drivers' operations within acceptable safety limits. The STZ is structured into three 33 
levels: 'Normal,' 'Dangerous,' and 'Avoidable Accident.' The 'Normal' level indicates a low probability of 34 
a crash, while the 'Dangerous' level suggests an increased likelihood of a crash without inevitability. The 35 
'Avoidable Accident' level signifies a high probability of a crash but allows enough time for drivers to act 36 
and prevent it. The key distinction between the 'Dangerous' and 'Avoidable Accident' levels refer to the 37 
more immediate need for intervention in the latter level. This stratified approach not only aids in the real-38 
time assessment of driving conditions but also ensures that interventions are appropriately scaled to the 39 
severity of the risk, thereby enhancing the overall efficacy of safety measures. 40 

According to the framework described above, the aim of the present study is to incorporate crash 41 
prediction and risk evaluation within a Long Short-Term Memory (LSTM framework, as well as identify 42 
the impact of certain features on this operation. To achieve this goal, the study evaluates explanatory 43 
variables related to risk and identifies the most dependable indicators of task complexity and coping 44 
capacity. These indicators include variables such as headway, distance, speed, forward collision, time of 45 
day (highlighted by high-beam indicators) and weather. 46 

The paper is organized as follows: At the beginning, a detailed introduction about the context and 47 
the aim of the current study is given. Furthermore, there was a presentation of the data gathered for the 48 
analysis. Subsequently, a concise explanation of the methodological approach is given. Then, the paper 49 
outlines the notable findings and summarizes the results of the conducted statistical analysis. Finally, 50 
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conclusions are emphasized, and the paper concludes by addressing limitations and presenting 1 
suggestions for future research. 2 

 3 
DATA 4 

In the context of this study, a naturalistic driving experiment was conducted, involving 50 car 5 
drivers from Belgium over a 15-month timeframe (from April 2021 to July 2022), resulting in the creation 6 
of a substantial database comprising 7,160 trips. The i-DREAMS project focuses on delivering an 7 
integrated set of monitoring and communication tools for intervention and support. Participants were 8 
selected according to specific criteria to ensure a varied and representative sample. Criteria included 9 
adequate driving experience and road exposure, being at least 18 years old, an equal representation of 10 
genders, and having vehicle types compatible with the i-DREAMS technology. Additionally, participants 11 
needed to use a smartphone, and vehicles used by multiple drivers were preferred to increase the sample 12 
size. The recruitment process involved general advertising, initial candidate screening based on the 13 
criteria, targeted advertising for certain groups, and providing detailed information before finalizing 14 
participation contracts. Participants were rewarded to participate in the naturalistic driving experiment. 15 

In order to monitor driving performance indicators, state-of-the-art technologies and systems 16 
were employed. Specifically, data from the Mobileye system (Mobileye, 2022), a dash camera, and the 17 
Cardio gateway (CardioID Technologies, 2022), which records driving behaviour and Global Navigation 18 
Satellite System (GNSS) signals, were utilized. The Mobileye system operates as a sensor network 19 
measuring parameters such as headway distance. Information regarding the current warning stage, as 20 
defined by Mobileye, was collected for comparison with the i-DREAMS warning stage (normal driving, 21 
dangerous phase, avoidable accident phase). The integration of these advanced technologies allows for a 22 
comprehensive analysis of driving behavior, capturing a wide range of variables that contribute to road 23 
safety. The data collected includes not only driving metrics but also contextual information such as 24 
weather conditions and time of day, providing a holistic view of the driving environment. 25 

To assess risk-related explanatory variables and reliable indicators of task complexity and coping 26 
capacity, parameters like time headway, distance travelled, forward collision, and weather conditions 27 
were analysed. Special attention was given to average speed, and a new variable, STZ_level, accounting 28 
for different levels of Safety Tolerance Zone (STZ) was created. Consequently, the dependent variable 29 
was the level of (i.e., STZ_level), categorized into three levels (Normal Driving phase: 0, Dangerous 30 
phase: 1, Avoidable Accident phase: 2). Table 1 provides an overview of the driving performance 31 
indicators examined along with their corresponding description. 32 

 33 
TABLE 1 Description of driving performance indicators 34 

Variable Description 

GPS_distances_sum Distance travelled (km) 

ME_AWS_hw_measurement_mean Headway measurement (seconds) 

ME_AWS_fcw_mean Forward collision warning 

ME_AWS_pcw_mean Pedestrian collision warning 

DEM_evt_hb_lvl_M_mean Medium level harsh braking events 

DEM_evt_ha_lvl_M_mean Medium level harsh acceleration events 

ME_Car_wipers_median Indicates weather conditions (wipers on/off) 

ME_AWS_time_indicator_median Indicates lighting conditions (day, dusk, night) 
 35 

Following thorough data cleaning and preparation, the subsequent phase of the analysis 36 
encompassed examining collinearity to eliminate any highly correlated variables from the models. 37 
Variables with an absolute correlation coefficient of at least 0.6 were considered highly correlated. Figure 38 
1 illustrates the correlation coefficients among the variables employed in the models. The analysis 39 
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indicated that “DEM_evt_ha_lvl_M_mean” and “DEM_evt_hb_lvl_M_mean” exhibit a high correlation; 1 
thus, “DEM_evt_hb_lvl_M_mean” was excluded from the following analysis. 2 

 3 

  4 
 5 
Figure 1 Correlation heatmap 6 

 7 
METHODS 8 

Following the data collection, an algorithm for feature selection, specifically XGBoost, was 9 
utilized to pinpoint the crucial features for predicting the STZ level. XGBoost is chosen for its efficiency 10 
and accuracy in handling large-scale datasets and its ability to handle various types of data. Subsequently, 11 
these identified features were input into a Long Short-Term Memory (LSTM) classifier to determine the 12 
STZ level. The subsequent sections provide a more detailed explanation of the algorithms employed in 13 
this process. 14 

 15 
Extreme Gradient Boosting (XGBoost) 16 

XGBoost, stands for eXtreme Gradient Boosting which is an ensemble learning algorithm that 17 
has gained widespread popularity for its high performance in various machine learning tasks. The 18 
XGBoost algorithm is an optimized form of the Gradient Boosting model that operates as a Newton-19 
Raphson algorithm, using a second-order Taylor approximation (11), contrary to Gradient Boosting, 20 
which relies on gradient descent. XGBoost's efficiency is due to its use of a novel tree boosting system 21 
that is faster and more accurate than existing methods. More specifically, XGBoost is an implementation 22 
of gradient-enhanced decision trees, in which trees are generated sequentially with significantly higher 23 
model accuracy, in less computational training time, than standard machine learning models. This makes 24 
XGBoost particularly suitable for large-scale data analysis in the context of driving behavior, where the 25 
volume of data can be substantial and the need for real-time predictions is critical. 26 

 27 
In the context of XGBoost feature importance calculation, the algorithm utilizes three key metrics: "gain", 28 
"frequency" and "cover" to assess the significance of each feature in the constructed trees (12). 29 
• Gain: It quantifies the improvement in accuracy that a particular feature brings to the model when 30 

creating branches in the decision trees. Features with higher gains are considered more influential in 31 
making decisions. 32 
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• Frequency: Is a simple count of how frequently a feature is utilized across all the trees in the 1 
ensemble. A higher frequency indicates that the feature is consistently chosen during the construction 2 
of decision trees. 3 

• Cover: Provides information about the relative scale of a feature's contribution to the overall 4 
prediction. It considers both the frequency of the feature and the magnitude of its impact on the 5 
predictions. Higher cover values suggest that a feature has a more significant influence on the model's 6 
output. 7 

 8 
Long Short-Term Memory (LSTM) 9 

A Long Short-Term Memory (LSTM) network stands out as a specialized form of Recurrent 10 
Neural Network (RNN) that has gained significant prominence across various domains due to its 11 
remarkable proficiency in capturing and comprehending intricate sequential patterns. This innovative 12 
architecture was conceived to address the prevalent challenge of vanishing gradients, a hindrance 13 
commonly encountered by traditional RNNs, particularly in tasks requiring the modelling of prolonged 14 
dependencies (13). 15 

The distinctive ability of LSTM networks to persistently retain information over extended 16 
durations positions them as a formidable choice for tasks involving the modelling of sequential data. 17 
Comprising a series of interconnected modules, an LSTM network adopts a chain-like architectural 18 
structure (14). At the core of these networks are fundamental processing units termed "cells," analogous 19 
to the complex nature of neurons in traditional multi-layer perceptrons (MLP). 20 

Within each LSTM cell, multiple gates play a pivotal role in orchestrating the flow of information 21 
across sequences of variable length. This intrinsic feature endows LSTM networks with the autonomy to 22 
discern the relevance of information over both long-term and short-term contexts, making them 23 
exceptionally well-suited for an extensive array of tasks such as activity recognition and language 24 
translation (15). 25 

 26 
In a standard LSTM configuration, three key gates contribute to the network's functionality: 27 
• Forget Gate: Tasked with determining which information is to be retained and what should be 28 

discarded in the cell state, the forget gate utilizes a sigmoid layer, known as the "forget gate layer," to 29 
make these critical decisions. 30 

• Input Gate: Responsible for deciding what new information should be incorporated into the cell state 31 
and how it should be updated, the input gate comprises two essential components. The input gate 32 
layer, leveraging a sigmoid function, determines the values to be updated, while a hyperbolic tangent 33 
(tanh) layer produces a vector of candidate values for potential integration into the state. The existing 34 
cell state undergoes an update based on these components. 35 

• Output Gate: With the responsibility of filtering and selecting the information to be output from the 36 
memory block at a specific time step, the output gate derives the output from the cell state after 37 
filtering. Consisting of a sigmoid layer, this gate determines the relevant portions of the cell state to 38 
be included in the output. The filtered cell state then passes through a tanh activation function to scale 39 
values within the range of -1 and 1. The final output is generated by multiplying the result with the 40 
output of the sigmoid gate, ensuring the desired output is achieved. 41 

 42 
With regards to the proposed LSTM model, the problem of defining the STZ levels becomes 43 

more straightforward, since LSTMs as a sub-category of Deep Neural Networks act like “black-boxes” 44 
(16) and thus the only input that needs to be provided to the model are labelled time series data. Collected 45 
historical measurements from the i-DREAMS technologies were used as input for an unsupervised 46 
learning approach grouping together measurements correlated with normal operation of a vehicle and 47 
those departing from normal driving behaviour. The proposed approach followed using LSTMs is given 48 
in Figure 2. 49 
 50 
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  1 
 2 
Figure 2 STZ modelling using LSTMs 3 
 4 
Model Evaluation Metrics 5 

A Long Short-Term Memory (LSTM) network stands out as a specialized form of Recurrent 6 
Neural Network (RNN) that has gained significant prominence across various domains due to its 7 
remarkable proficiency in capturing and comprehending intricate sequential patterns. This innovative 8 
architecture was conceived to address the prevalent challenge of vanishing gradients, a hindrance 9 
commonly encountered by traditional RNNs, particularly in tasks requiring the modelling of prolonged 10 
dependencies (13). 11 

In order to evaluate and compare the classification performance across various configurations 12 
(involving hyperparameters and input combinations), established machine learning error metrics were 13 
computed. The evaluation relies on metrics derived from the confusion matrix, which includes True 14 
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). The classification 15 
algorithms are assessed based on accuracy, precision, recall, and f1-score, as defined below. 16 

 17 
Accuracy is a measure that assesses the proportion of correctly classified observations in a model's 18 
predictions and is expressed as: 19 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 ,  (1) 20 

Precision, measuring the number of positive class predictions that truly belong to the positive class, is 21 
defined as: 22 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,   (2) 23 

Recall, also referred to as True Positive Rate, is defined as: 24 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,   (3) 25 

F-measure, a composite metric combining precision and recall, is defined as: 26 

f1-score = 
2𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥 (𝑅𝑒𝑐𝑎𝑙𝑙) 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+(𝑅𝑒𝑐𝑎𝑙𝑙)
 , (4) 27 
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 1 
RESULTS  2 

An algorithm for assessing the importance of features, derived from Extreme Gradient Boosting 3 
(XGBoost), was employed to assess the relevance of variables in predicting STZ and identify the most 4 
suitable independent variables. Among all the indicators analysed, the factors with the highest importance 5 
were headway measurement, forward collision warning indicator and GPS distance travelled. Parameters 6 
related to task complexity, such as car wipers and time indicator, found to be less significant. 7 
Additionally, variables such as medium-level harsh acceleration events and pedestrian collision warning 8 
had a lower impact on STZ. Figure 3 presents an overview of the independent variables' feature 9 
importance based on the XGBoost algorithm. 10 

 11 

  12 
 13 
Figure 3 XGBoost feature importance of independent variables 14 

 15 
A dataset consisting of approximately 275,000 data points was employed to train an LSTM 16 

Neural Network model. In accordance with the feature importance and the significance of relevant 17 
indicators, the input layer was structured with three neurons, representing headway measurement, forward 18 
collision warning indicator, and distance travelled. Additionally, the output layer was configured with a 19 
single neuron denoting the STZ. The model's architecture was meticulously designed to ensure that the 20 
most critical features were effectively leveraged, enhancing the model's predictive accuracy and 21 
reliability. 22 

For an in-depth evaluation of the model performance, a confusion matrix was produced for the 23 
independent variable of STZ_level which illustrates the number of correct and incorrect predictions per 24 
class, as shown in Figure 4. In particular, the confusion matrix contains three rows and three columns and 25 
reports the number of true positives, true negatives, false positives, false negatives values. This allows a 26 
more detailed analysis than the proportion of correct classifications (e.g., accuracy, precision, recall). 27 

 28 
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  1 
 2 
Figure 4 Confusion Matrix 3 

 4 
For the evaluation metrics of the model, performance indicators such as accuracy, precision, 5 

recall and f1-score were used as shown in the Table 2. It should be noted that accuracy provides the 6 
overall correctness of a model, while precision computes the accuracy of positive predictions and recall 7 
measures the ability of a model to correctly identify all relevant instances. Given the fact that identifying 8 
correctly risky driving behaviour is crucial for the purpose of this analysis, Recall stands as the most 9 
significant metric. 10 

 11 
TABLE 2 Assessment of the classification LSTM on STZ level 12 

Model Accuracy  Precision Recall f1-score 

Long Short-Term Memory (LSTM) 71% 55% 67% 55% 

 13 
The LSTM model demonstrated an accuracy of 71%, indicating that the model correctly 14 

identified the STZ level in 71% of the cases. The precision of 55% suggests that just over half of the 15 
positive predictions made by the model were correct, while the recall of 67% indicates that the model 16 
successfully identified 67% of all actual cases of risky driving. The f1-score of 55% highlights a balance 17 
between precision and recall, emphasizing the model's moderate effectiveness in identifying safety-18 
critical driving behaviors. 19 

Further analysis of the confusion matrix revealed that the model performed better at identifying 20 
the 'Normal' and 'Dangerous' levels compared to the 'Avoidable Accident' level. This discrepancy 21 
suggests that while the model is fairly reliable in detecting standard and moderately risky driving 22 
behaviors, it has more difficulty in accurately predicting the most critical situations where immediate 23 
intervention is necessary. This limitation could be addressed in future studies by incorporating additional 24 
data or refining the model architecture. 25 

The relevant performance of LSTM on STZ level for the Belgian car drivers is presented in 26 
Figure 5. 27 

 28 
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  1 
 2 
Figure 5 Performance of LSTM for STZ level 3 

 4 
In summary, the LSTM model's performance indicates a promising approach for real-time 5 

prediction of risky driving behaviors, with a notable accuracy rate of 71%. However, the precision and 6 
recall metrics highlight areas for improvement, particularly in enhancing the model's ability to accurately 7 
identify all instances of dangerous and avoidable accident levels. These findings underscore the 8 
importance of continuous refinement and validation of machine learning models to ensure their 9 
effectiveness in practical applications. 10 

 11 
DISCUSSION 12 

As shown in Table 2, the LSTM achieve significant results, reaching 71% accuracy after the 13 
developed trials. Although LSTM is often used for sequence modelling, it is worth noting that the 14 
sequence may not always be explicitly visible in the predictors themselves. In some cases, the sequence 15 
may be implicit in the way that the data are structured or organized. For instance, in time series data, the 16 
sequence is often defined by the order in which the data were collected over time. In this case, the LSTM 17 
is used to model and make predictions based on the temporal dependencies and patterns in the data. In 18 
other cases, the sequence may be less obviously related to time, but still exist in the way that the data is 19 
organized. In natural language processing, the sequence may be defined by the order of words in a 20 
sentence or text document. Thus, the sequence is implicit in the way that the data was collected or 21 
organized, even if it's not immediately apparent from the predictors themselves. An LSTM could still be 22 
used in this case to model and make predictions based on the implicit sequence in the data. 23 

It should be noted that an accuracy of less than 60% may not be sufficient for a high-performance 24 
intervention system, as it could result in a relatively high number of false alarms or missed detections. 25 
However, the required level of accuracy depends on the specific use case and the risks involved. For 26 
instance, in a system designed to detect potential crashes or safety hazards, a higher level of accuracy may 27 
be necessary in order to ensure the safety of drivers and other road users. As for the use of prediction 28 
models by an intervention system, the output of the models can be used in a variety of ways. In particular, 29 
the prediction models can generate real-time alerts or warnings to drivers or other stakeholders, such as 30 
traffic control centers or emergency responders. The models can also be used to trigger automated 31 
interventions, such as adjusting the speed of a vehicle or activating safety features like automatic braking 32 
systems. In addition, the output of prediction models can be used for ongoing analysis and monitoring of 33 
road safety performance, in order to identify trends and patterns that can inform future interventions and 34 
improvements.  35 

Cura et al. (2021) (17) developed an LSTM technique to assess and classify bus driver behaviour 36 
characterised by deceleration, engine speed, corner turn and lane change attempts. Their proposed model 37 
demonstrated an accuracy of 87.7%, precision of 88.5%, and recall of 87.7%. Furthermore, Parsa et al. 38 
(2019) (18) utilised real-time data along with LSTM deep learning technique to detect road crashes. The 39 
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LSTM model achieved as accuracy of 96%, a detection rate of 73.8% and a false alarm rate of 3%. These 1 
findings are in line with the results of this research, where LSTMs showed significant predictive 2 
accuracy. Lastly, it should be mentioned that the aforementioned studies underscore the importance of 3 
model selection in road traffic safety applications and highlight the potential of LSTMs in different yet 4 
related contexts. 5 

Nevertheless, this study is not without limitations. Firstly, drivers’ socio-demographic 6 
characteristics, such as gender, age, driving experience, education level, or mental health state were not 7 
included in the analysis. Secondly, the influence of psychological status of participants, such as driver 8 
distraction through mobile phone use, fatigue or sleepiness were not taken into consideration in the 9 
present study, as only naturalistic driver data from the driving experiment were used. Given the fact that 10 
drivers react differently under different circumstances with regards to road layouts (i.e., urban, rural 11 
environments, highways) and traffic volumes (i.e., high, medium or low traffic volumes), it would be of 12 
great interest to investigate headway or speed using environment, vehicle and driver questionnaire data. 13 

As per future research directions, the experimental sample size of the analysis could be further 14 
expanded and strengthened. A larger dataset including additional drivers’ age groups or drivers from 15 
different countries, regions could enhance the analysis procedure. At the same time, data from different 16 
transport modes could be also explored in order to allow comparisons among private (i.e., car drivers) and 17 
professional drivers (i.e., bus and truck drivers). Future research efforts could consider the examination of 18 
additional machine learning methods to be applied. For instance, imbalanced learning as well as 19 
microscopic data analysis of the database collected could be implemented through deep learning and 20 
econometric techniques. Lastly, the investigation of other significant risk indicators (e.g., drug abuse, 21 
alcohol consumption or the seat belt use) could be also included in the future. 22 
 23 
CONCLUSIONS 24 

The study aimed to investigate the impact of various parameters on predicting the Safety 25 
Tolerance Zone (STZ) and develop a deep learning model to identify risky driving behaviour in real time. 26 
The analysis relied on data collected from a naturalistic driving experiment involving 50 Belgian car 27 
drivers for 15-month period and more than 7,000 trips were analysed.  28 

For the purpose of this research, the most important risk indicators were identified. Towards that 29 
end, an importance assessment algorithm derived from Extreme Gradient Boosting (XGBoost) was 30 
implemented in order to assess the importance of the examined variables (i.e., headway, forward collision 31 
warning, pedestrian collision warning, distance travelled, harsh acceleration events, time of the day and 32 
weather conditions) in predicting STZ level. Furthermore, a Long Short-Term Memory (LSTM) model 33 
was utilized for real-time data prediction, considering the key and meaningful risk indicators. 34 

Focusing on the results of all classes combined, classifiers achieve 71% accuracy, 55% precision 35 
and 67% recall. First of all, the total accuracy means that the model is 71% accurate in making a correct 36 
prediction. Moreover, the model was 55% accurate regarding a positive sample and 67% accurate on 37 
predicting safety-critical classes (i.e., “Dangerous” and “Avoidable Accident”), which means that the 38 
model can be trusted in its ability to detect positive samples in a moderate degree. 39 

The findings revealed a significant impact of headway, forward collision warning indicator and 40 
distance travelled on predicting the STZ level. The classification results could be also improved by 41 
exploiting other imbalanced learning techniques in order for all three STZ levels to be correctly identified 42 
in real-time. Further optimisation and exploration of LSTM architectures may enhance their performance 43 
and reliability in driver behaviour analysis. 44 

A combination of machine learning algorithms and i-DREAMS data could be proved beneficial 45 
in order to identify safe or unsafe driving behaviour. Through the utilization of data-driven insights, 46 
advanced analytics and real-time interventions, this method has the potential to enhance road safety, 47 
leading to a decrease in crashes, fatalities, or serious injuries. 48 

 49 
 50 

 51 
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