

#25-06053

Examining the Impact of Feedback on Traffic and Safety Behavior of Car Drivers in a Naturalistic Driving Study

Apostolos Ziakopoulos

Transportation Engineer, PhD Candidate

Together with: Armira Kontaxi and George Yannis

National Technical University of Athens Department of Transportation Planning and Engineering

Introduction

- Numerous studies have focused on driving behavior and naturalistic observations, primarily examining behavior recording and subsequently analyzing and modeling driver profiles
- Researchers have developed technologies and machine learning algorithms to detect these behaviors and technologies that provide feedback to drivers
- Feedback to drivers has been shown to be a highly effective method for enhancing road safety
- Many studies have examined the effect of feedback, however there is very little research that quantify the exact effect on driver behavior and safety

Research Scope

The objective of the current research is to exploit large-scale trip data from smartphone sensors to identify the impacts of driver feedback on various key performance indicators, namely speeding, harsh braking and harsh acceleration events

Naturalistic Driving Experiment

- The experiment consists of 6 different phases differing in the type of feedback provided to drivers:
 - Phase 1 trip list and characterization accessible to the application user
 - Phase 2 Scorecard enabling scoring per trip
 - Phase 3 Maps and Highlights providing further information per trip
 - Phase 4 Comparisons between drivers
 - Phase 5 Competitions with prizes for safe driving
 - Phase 6 back to Phase 1 all additional feedback removed from the drivers

The Smartphone Application

- A mobile application to record user's driving behavior (automatic start / stop)
- A variety of APIs is used to read mobile phone sensor data
- Data is transmitted from the mobile App to the central database
- > Driving behavior indicators are designed using:
 - machine learning algorithms
 - big data mining techniques
- State-of-the-art technologies and procedures in compliance with standing Greek and European personal data protection laws (GDPR)

Methodological Approach

Structural Equation Models (SEM)

The underlying mathematical structure of SEMs can be defined as follows:

$$\eta \,=\, \beta \,\eta \,+\, \gamma \,\xi \,+\, \varepsilon$$

➤ where:

- η is a vector expressing the dependent variables
- ξ is a vector expressing the independent variables
- ε is a vector expressing the regression error term
- β is a vector expressing the regression coefficients for the dependent variables
- γ is a vector expressing the regression coefficients for the independent variables
- The proposed SEM structure retained two latent unobserved variables:
 - Feedback, expressing the influence of the different features of the smartphone app
 - Exposure, expressing the influence of the exposure metrics

Descriptive Statistics

Overall, during the 21-months experiment 73,869 trips were recorded from a sample of 175 car drivers (male 46%, female 54%)

Experiment Phases	Percentage of mobile	Harsh accelerations	Harsh brakings per 100km	Speed above the speed	Percentage of speeding time	
	use	per 100km	I	limits		
Phase 1	3.85%	6.42	15.78	3.89km/h	5.32%	
Phase 2	2.84%	6.26	13.74	3.19 km/h	3.12%	
Phase 3	2.08%	6.26	13.94	2.31 km/h	2.60%	
Phase 4	2.28%	6.96	12.54	2.34 km/h	2.45%	
Phase 5	2.19%	6.24	12.14	1.85 km/h	2.13%	
Phase 6	2.48%	8.26	16.34	2.60 km/h	3.34%	

Preliminary Analysis

- Before the development of the SEM model, the Wilcoxon signed-rank test was used to assess behavioral changes across feedback phases, as it is appropriate for:
 - non-parametric methods
 - within subjects design studies
- From Phase 1 to Phase 2, feedback reduced mobile use by 26.20%, speeding by 41.40%, and harsh braking by 12.90%
- Mixed outcomes were observed between Phase 2 and Phase 4, with decreases in speeding but increases in harsh braking
- Risky behaviors increased after feedback removal, emphasizing the need for sustained interventions to maintain safe driving

SEM Results

SEM model of Percentage of speeding time, Harsh Brakings per 100km & Harsh Accelerations per 100km

SEM Components		Parameters	Estimate	S.E.	z-value	P(> z)
Latent	Feedback	Baseline	1.000	-	_	-
Variables		Scorecard feature	2.076	0.014	148.640	0.000
		Maps feature	1.646	0.010	157.864	0.000
		Compare feature	1.215	0.029	41.754	0.000
		Competition & Challenges feature	2.053	0.038	54.447	0.000
	Exposure	Distance (for driving speed 30km/h – 50km/h)	1.000	-	-	-
		Morning peak	2.473	0.350	7.072	0.000
		Afternoon peak	-1.360	0.129	-10.579	0.000
Regressions	Percentage of speeding time	Intercept	0.409	0.003	138.941	0.000
		Exposure	0.326	0.043	7.627	0.000
		Feedback	-0.214	0.014	-15.655	0.000
	Harsh Accelerations per 100km	Intercept	0.099	0.001	95.037	0.000
		Exposure	0.028	0.010	2.769	0.006
		Feedback	0.026	0.004	6.493	0.000
		Competition & Challenges feature	-0.001	0.000	-2.748	0.000
		Afternoon peak	0.006	0.002	3.095	0.002
	Harsh Brakings per 100km	Intercept	0.184	0.001	158.258	0.000
		Exposure	0.077	0.014	5.542	0.000
		Feedback	-0.027	0.005	-4.976	0.000
Covariances	Percentage of speeding time	Harsh Brakings per 100km	0.007	0.001	7.686	0.000
	Harsh Accelerations per 100km	Percentage of speeding time	0.006	0.001	9.526	0.000
	Harsh Brakings per 100km	Harsh Accelerations per 100km	0.021	0.000	75.739	0.000
Feedback		Exposure	-0.001	0.000	-5.558	0.000
Goodness-of-	fit measures CFI	1	0.940			
	TLI		0.944			
	RMSEA		0.049			0.845
	SRMR		0.025			

Discussion (1/2)

Feedback

- The scorecard feature has the highest positive estimate at 2.076 (p < 0.001), indicating its crucial role in modifying driving habits</p>
- These feedback mechanisms are effective in reducing the percentage of speeding time and harsh braking incidents, although there is a slight increase in harsh accelerations

Exposure

- Exposure factors, particularly the times of day, play a significant role in driving behaviors
- Morning peak exposure is associated with increased driving aggressiveness

Discussion (2/2)

Regressions

- Feedback mechanisms significantly reduce speeding and harsh braking events, underscoring their critical role in promoting safer driving practices
- While feedback slightly reduces harsh accelerations during competitions, it also shows a slight positive association with them

Covariances

- Covariance analysis highlights strong positive correlations among all driving indicators, illustrating how aggressive driving patterns often involve multiple risky behaviors
- A negative correlation between feedback and exposure indicates that increased feedback reduces exposure to risky driving conditions

Conclusions

- The ND experiment shows that driving behavior can be evaluated and communicated to drivers
- The influence of feedback increases across the various experimental phases, though it appears that there are some platooning effects for drivers towards the end of the experiment
- The ultimate goal of providing feedback to drivers is to activate the process of learning and self-assessment and to enable them to gradually improve their performance and monitor their progress
- This process may include establishing detailed cause-and-effect relationships between aggressive driving and risk, information on improving road safety

Future Challenges

- Integration of a multitude of IoT technologies, development of advanced know-how
- Development of new smartphone applications, for all road users and all transport modes
- Properly matching telematics metrics with crash risk
- Exploitation of know-how for the safe integration and monitoring of automated vehicles
- Enhancement of innovation capacity and creation of new market opportunities for driver behaviour telematics

#25-06053

Examining the Impact of Feedback on Traffic and Safety Behavior of Car Drivers in a Naturalistic Driving Study

Apostolos Ziakopoulos

Transportation Engineer, PhD Candidate

Together with: Armira Kontaxi and George Yannis

National Technical University of Athens Department of Transportation Planning and Engineering