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The driving task can be characterized as the dynamic control task

in which the driver has to select relevant information from a vast

array of mainly visual inputs to make decisions and execute

appropriate control responses.

Within this context, task complexity is related to the current status

of the real-world context in which a vehicle is being operated.

Coping capacity refers to the ability of drivers and road systems to

manage and respond effectively to various challenges and stressful

situations encountered while driving.
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For the purpose of this analysis, an on-road driving experiment

was carried out involving 135 car drivers (with total duration of 4

months) and a large database of 31,954 trips was collected.

Additionally, a simulator experiment was carried out involving 55

drivers (with total duration of 2 months) and a database consisting

of 165 trips (55 drivers x 3 driving scenarios) was created. The most

prominent driving behavior indicators, such as speeding, headway,

duration, distance and harsh events were assessed. The field trials

were structured into four phases, while the simulator trials

consisted of three phases, as depicted in Figures 1 and 2.
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Figure 1: Four phases of the on-road 

experiment

Conclusions

Table 1: Evaluation metrics for NN for headway

As shown in Figure 6, the analysis identified that duration, average speed, vehicle age, time

indicator, overtaking, gearbox, forward collision warning and car wipers as the most critical

features for the on-road dataset. On the other hand, distance travelled and fuel type were found

to be less significant. As per simulator dataset, it was revealed that time to collision, average

speed, duration, hands-on event and fatigue found to be the most influential factors among all

examined indicators. Conversely, parameters such as lane departure warning was less significant,

while forward collision warning had a negligible impact on STZ headway.

Figure 6: XGBoost feature importance of independent variables (a) on-road (b) simulator experiment

Figure 2: Three scenarios of the simulator 

experiment

Figure 3: Car simulator developed by 

DriveSimSolutions, using OEM Peugeot 206 parts

Figure 4: Example of an intersection in 

STISIM Drive 3

Figure 5: Proposed methodology for the definition of the 

STZ headway

Model Fit 

measures
0 1 2 Total

On-road experiment

Accuracy 0.863 0.852 0.819 0.817

Precision 0.845 0.805 0.803 0.808

Recall 0.891 0.818 0.744 0.834

F1 Score 0.867 0.811 0.773 0.819

False alarm rate 0.317 0.413 0.348 0.392

Simulator experiment

Accuracy 0.907 0.973 0.915 0.898

Precision 0.876 0.968 0.853 0.912

Recall 0.899 0.946 0.842 0.906

F1 Score 0.887 0.957 0.847 0.899

False alarm rate 0.287 0.114 0.257 0.153

❑ A feature importance analysis (i.e. Extreme Gradient

Boosting - XGBoost) was implemented in order to

evaluate the significance of various variables in

forecasting STZ levels in terms of headway.

❑ Machine learning analysis (i.e. Neural Networks)

was applied to make accurate and data-driven

predictions by identifying complex patterns between

task complexity and coping capacity on crash risk.

❑ A comprehensive assessment of the performance of

three machine learning classifiers (i.e. Decision

Trees, Random Forests and k-Nearest Neighbors)

across different datasets (i.e. on-road and simulator

experiment) was performed to predict STZ levels for

headway.

A custom car simulator developed by DriveSimSolutions was

designed (Figure 3), allowing for creation of custom scenarios and

data collection at every simulation update frame. It is also

visualized on a triple monitor setup consisting of three 49 inch 4K

monitors, providing an 135° field of view (Figure 4).

Figure 7: The multi-layer Neural Network model layout for STZ headway (a) on-road (b) simulator experiment

Based on the feature importance and the significance of the relevant indicators, a dataset of 998,358

rows from the on-road and 745,251 rows from the simulator experiment was used and a feed-

forward multilayer perceptron NN model was implemented. The data were split into 80% train and

20% test in order to evaluate the models. The model was run with deep neural networks, making

use of two hidden layers (represented by circles in the middle of the diagram) where the

computations take place. Each hidden layer node receives inputs from the previous layer, processes

them, and passes the output to the next layer. STZ1 headway refers to normal phase, STZ2 headway

refers to danger phase, while STZ3 headway refers to avoidable accident phase.

*0 refers to normal phase, 1 refers to dangerous phase, 2 refers to avoidable accident phase

Table 1 provides the assessment of classification model for on-road and simulator

dataset. Focusing on the results of on-road experiment, the classifiers achieved 81.7%

accuracy, 80.8% precision, 83.4% recall and an F1-score of 81.9%. The overall accuracy

indicates that the model is 81.7% accurate in making correct predictions, while the

recall of 83.4% demonstrates the model's ability to detect safety-critical classes (i.e.

"dangerous" and "avoidable accident") effectively.

In the simulator experiment, the overall model metrics were impressive, with an

accuracy of 89.8%, precision of 91.2% and recall of 90.6%. These metrics indicated that

the model was highly accurate in making correct predictions and excels in identifying

positive samples, as evidenced by its high precision. The model's ability to detect

safety-critical classes effectively was also demonstrated by its high recall. This

performance suggested a well-rounded and effective predictive capability for headway

in the simulator environment.

The evaluation of the three machine learning classifiers (DT, RF, kNN) revealed varying

performance across the two datasets. Figure 8 presents the comparison of classifier

metrics of the three machine learning techniques for headway.

In the on-road experiment, RF exhibited higher performance, leading in satisfactory

accuracy (86.9%) and precision (88.7%), while showing competitive recall scores

(90.7%). DT and kNN showed similar performance, though kNN tended to lag slightly

behind in precision.

The results from the simulator were similar to those observed in the on-road

experiment. In particular, in the simulator experiment for STZ headway, RF emerged as

the top-performing model with an accuracy of 90.1%, demonstrating its ability to

accurately classify driving behavior in a controlled environment. Following the DT

model which also performed well scoring a notable 87.1% accuracy. Regarding kNN

model, they underperformed compared to the other two, displaying a lower weighted

accuracy (85%) and recall (82.6%).

Among the different algorithms, RF stranded out with the highest accuracy of 90% in

STZ headway, indicating its ability to accurately classify driving behaviors in a

controlled environment. RF also achieved a well-balanced precision (87.2%) and recall

(84.1%), demonstrating its robustness and versatility. Figure 8: Comparison of classifier metrics of machine learning techniques (DT, RF, kNN) 

(a) on-road (b) simulator experiment

➢ The effectiveness of the NN models in predicting headway levels was encouraging; the level of STZ can be predicted

with an exceptional accuracy of up to 89.8%.

➢ The three machine learning classifiers (DT, RF, kNN) had insightful results in terms of accuracy, precision and recall.

➢ Results indicated that RF models outperformed the DT and kNN models across all metrics, making them the most

effective for predicting headway with accuracy up to 90%.

➢ The DT model showed satisfactory performance, while the kNN model consistently had the lowest but moderate

scores, indicating that it is the least effective for this task.

➢ The performance variations observed underscored the importance of selecting the right model based on data

characteristics and precision-recall trade-offs, essential for real-world applications.

➢ As per future research, imbalanced learning, factor analysis and models taking into account unobserved heterogeneity

could be explored for the understanding of the relationship between task complexity, coping capacity and crash risk.
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