Improving Safety Performance Function Model Fit Using Exploratory Regression Techniques

June 8, 2022

University of Kentucky Riana Tanzen, Ph.D. Candidate Eric Green, Ph.D. Reginald Souleyrette, Ph.D. Arnold Stromberg, Ph.D.

Presentation Outline

- ✓ Background
- ✓ Motivation of the research
- ✓ Data Preparation
- ✓ Model Development and Results
- ✓ Recommendations

Background

The Highway Safety Manual Approach

* In Kentucky, Potential for Safety Improvement (PSI) is referred to as Excess Expected Crashes (EEC)

EEC = *SPF Predicted Crashes* – *EB Estimated Crashes*

Safety Performance Functions

• Negative Binomial Regression

SPF predicted crashes $(N_{SPF}) = e^{\alpha} * Length * AADT^{\beta}$

$$Variance = N_{SPF} + \frac{N_{SPF}^2}{\theta}$$

Here,

 α , β = Regression parameters

 θ = Inverse overdispersion parameter (1/k)

Base Conditions and Adjustment Factors

- **Base conditions:** Typically, the most frequently encountered geometric attributes
- Adjustment Factors: Used to adjust SPF crashes when any segment's geometric attributes are different from the SPF's base conditions.
- Sources:
 - The Highway Safety ManualCMF Clearinghouse

Adjusted SPF Crashes =

SPF Crashes for base condition $*AF_1 * AF_2 * AF_3 * \cdots$

Empirical Bayes (EB) Estimate

- Accounts for the regression-to-the-mean bias.
- EB Expected Crashes =

weight * SPF predicted crashes +(1 - weight) * observed on that site

$$weight = \frac{1}{1 + \frac{N_{SPF}/Length}{\theta}}$$

Motivation of the research

Problem Statement

More Base Conditions Less OVB Better GOFs No Base Conditions Less OVB Worse GOFs

OVB = Omitted Variable Bias GOF = Goodness-of-fit measures

Goal of the research

Explores the tradeoffs between SPF quality and network coverage by

Expanding the range of base conditionsExploring alternate form of SPF

Data Preparation

Roadway Data (**Rural two-lane**)

• Source: Highway Information System (HIS)

Crash Data (KABCO)

- Source: Kentucky State Police (KSP)
- Base year: 2013-2017

CriteriaConditions• AADT• Lane Width• Shoulder Width• Vertical Curve

SPF Development and Results

SPF Development

SPF crash estimate = $e^{\alpha} * Length * AADT^{\beta}$

Used an automation tool named "SPF-R", a script in RStudio: <u>http://github.com/irkgreen/SPF-R</u>

Assessing SPFs using CURE Plots

- Plots cumulative residual vs explanatory variable (e.g. AADT).
- Expected to oscillate around X-axis.
- Expected to stay within two standard deviations.
- Free of large vertical jumps
- Minimum upward or downward drifting.

Example CURE Plot with $\pm 2\sigma$ confidence limits*

* Source: Hauer, E., Bamfo, J., 1997. Two tools for finding what function links the dependent variable to the explanatory variables, in: Proceedings of the ICTCT 1997 Conference, Lund, Sweden

Goodness-of-Fit Measures

Generic vs. Specific SPF

No base conditions

Lane Width = 9 ft Shoulder Width = 3 ft Grade Class = A

GR = A (0-0.4% grade)

Proposed Improvements

Expanding the range of base conditions

Exploring SPFs with additional explanatory variables

Expanding the range of base conditions

Models	Base Conditions			
	Lane Width	Shoulder Width	Curve	
R1	9	0-3	A, B	
R2	9	3-6	A, B	
R3	9-13	3	A, B	
R4	8-10	3	A, B	
R5	9-12	3	А	

CURE Plots

Goodness-of-fit Measures

Models	CDP	MACD	Modified R ²	Theta
Generic	86.0	5582.9	0.26	1.163
Specific	0.6	101.0	0.65	2.230
R1	4.5	112.9	0.59	1.950
R2	2.0	141.9	0.60	2.094
R3	6.0	635.8	0.35	1.607
R4	12.0	254.7	0.55	1.873
R5	37.8	297.1	0.52	1.800

SPFs with additional explanatory variables

Model	Variable added	Model form
V1	Lane Width (LW)	$Y = L * e^a AADT^{b1} * e^{LW * b2}$
V2	Shoulder Width (SW)	$Y = L * e^a AADT^{b1} * e^{SW * b2}$
V3	Roadway Width (LW+SW)	$Y = L * e^a AADT^{b1} * e^{(LW+SW)*b2}$
V4	LW, SW	$Y = L * e^a AADT^{b1} * e^{LW * b2} * e^{SW * b3}$
V 5	LW, SW, LW*SW (Interaction term)	$Y = L * e^{a} AADT^{b1} * e^{LW * b2} * e^{SW * b3} * e^{LW * SW * b4}$

SPFs with additional explanatory variables (cont.)

Model	Variable added	Model form
V6*	Degree of Curvature (CUDEG)	$Y = L * e^{a} * AADT^{b1} * (2 * CUDEG)^{b_{2}} * (\frac{CUDEG}{5730 * L})^{b_{3}}$
V7*	LW, SW, CUDEG	$Y = L * e^{a} * AADT^{b1} * e^{LW * b2} * e^{SW * b3} * (2 * CUDEG)^{b_{4}} * (\frac{CUDEG}{5730 * L})^{b5}$

* **Reference:** Bauer, K. M., and D. W. Harwood. Safety Effects of Horizontal Curve and Grade Combinations on Rural Two-Lane Highways. *Transportation Research Record*, Vol. 2398, No. 1, 2013, pp. 37–49. <u>https://doi.org/10.3141/2398-05</u>

Goodness-of-fit Measures

Models	CDP	MACD	Modified R ²	Theta
Generic	86.0	5582.9	0.26	1.163
Specific	0.6	101.0	0.65	2.230
V1	76.6	4583.8	0.30	1.206
V 2	64.7	3148.8	0.35	1.279
V3	65.1	3177.5	0.35	1.278
V4	64.9	3136.5	0.35	1.281
V5	65.6	3128.4	0.35	1.284
V6	90.0	3687.5	0.29	1.239
V7	63.4	1628.1	0.37	1.358

Cross Validation

Cross Validation Metric: Root Mean Square Error

Models	RMSE
Generic	1.27
Specific	0.94
R2	1.1
V7	1.15

Recommendation

Recommendations

SPFs with Base Conditions (specific/Range)

- Better fit and predictive power
- Still dependent on the availability of AFs

SPFs with explanatory variables

- Shows improvement in model fit and predictions compared to the generic model
- Independent of any need for adjustments

Contact Information

Riana Tanzen, Ph.D. Candidate

University of Kentucky

riana.tanzen@uky.edu

Eric Green, PhD, PE Kentucky Transportation Center eric.green@uky.edu

Reg Souleyrette, PhD, PE, F. ASCE Kentucky Transportation Center <u>souleyrette@uky.edu</u>

