A paper titled “Time series and support vector machines to predict Powered-Two-Wheeler accident involvement and accident type” co-authored by Athanasios Theofilatos, George Yannis, Costas Antoniou, Antonis Chaziris and Dimitris Sermpis, is now published in Journal of Transportation Safety and Security. This study exploited real-time traffic and weather data from two major urban arterials in the city of Athens, Greece. Due to the high number of candidate variables, a random forest model was applied to reveal the most important variables. Then, the potentially significant variables were used as input to a Bayesian logistic regression model in order to reveal the magnitude of their effect on PTW accident involvement. The results of the analysis suggest that PTWs are more likely to be involved in multi-vehicle accidents than in single-vehicle accidents. It was also indicated that increased traffic flow and variations in speed have a significant influence on PTW accident involvement.
Items Under Tag: real-time data
Archives
Tag cloud
accident severity
alcohol
buses
campaigns
cell phone
cerebral diseases
children
culture
cyclists
data analysis
distraction
driving simulator
education & training
enforcement
equipment
esafety
fatigue
helmet
impact assessment
international comparisons
junctions
lighting
lorries
measures assessment
mobility and transport
mopeds
motorcyclists
motorways
naturalistic driving
older drivers
pedestrians
road fatalities
road interventions
road safety data
rural roads
safety assessment
safety equipment
seat belt
speed
strategy
traffic
urban safety
weather
work related safety
young drivers